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Spatiotemporal processes are ubiquitous in the environmental and physical sciences. This is certainly true of atmospheric and oceanic
processes, which typically exhibit many different scales of spatial and temporal variability. The complexity of these processes and the
large number of observation/prediction locations preclude the use of traditional covariance-based spatiotemporal statistical methods.
Alternatively, we focus on conditionally speci� ed (i.e., hierarchical) spatiotemporal models. These methods offer several advantages over
traditional approaches. Primarily, physical and dynamical constraints can be easily incorporated into the conditional formulation, so that
the series of relatively simple yet physically realistic conditional models leads to a much more complicated spatiotemporal covariance
structure than can be speci� ed directly. Furthermore, by making use of the sparse structure inherent in the hierarchical approach, as well
as multiresolution (wavelet) bases, the models can be computed with very large datasets. This modeling approach was necessitated by
a scienti� cally meaningful problem in the geosciences. Satellite-derived wind estimates have high spatial resolution but limited global
coverage. In contrast, wind � elds provided by the major weather centers provide complete coverage but have low spatial resolution.
The goal is to combine these data in a manner that incorporates the space-time dynamics inherent in the surface wind � eld. This is an
essential task to enable meteorological research, because no complete high-resolution surface wind datasets exist over the world oceans.
High-resolution datasets of this type are crucial for improving our understanding of global air–sea interactions affecting climate and
tropical disturbances, and for driving large-scale ocean circulation models.

KEY WORDS: Climate; Combining information; Conjugate gradient algorithm; Dynamical model; Fractal process; Gibbs sampling;
Numerical model; Ocean model; Satellite data; Turbulence; Wavelets.

1. INTRODUCTION

Fierce storms in California, � oods in Peru, drought in
Australia and Indonesia—just a few of the extreme weather
events attributed to the 1997–1998 El Niño event (e.g., Kerr
1998). This El Niño brought unprecedented public attention
to the interaction between the tropics and extratropics, and
perhaps more important, the interaction between the ocean
and the atmosphere. These interactions have been a focus of
climate research over the past decade. Changes in weather
around the world, such as those associated with the recent El
Niño, have been linked to variations in the atmospheric circu-
lation that at a fundamental level are affected by exchanges in
heat, moisture, and momentum between the atmosphere and
ocean. This exchange across the air/sea boundary is critically
related to small-scale spatiotemporal features of sea-surface
winds.

Climatologists and oceanographers use wind information in
two main ways: (1) to improve fundamental knowledge about
atmospheric phenomena such as El Niño (e.g., Liu, Tang, and
Wu 1998), tropical cyclones (e.g., Gray 1976), and large-scale
tropical oscillations (e.g., Madden and Julian 1994), and (2)
to provide input (forcing) for deterministic models of the cou-
pled ocean/atmosphere system (e.g., Milliff, Large, Morzell,
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Danabasoglu, and Chin 1999 and references therein). In both
cases, one must know something about the behavior of the sur-
face wind � eld and its horizontal derivatives at small scales.
For example, it has been shown through the use of simu-
lated datasets that deterministic models of the ocean are sen-
sitive to both the temporal (Large, Holland, and Evans 1991)
and spatial (Milliff, Large, Holland, and McWilliams 1996)
resolution of the surface wind forcing (see also Chen, Liu,
and Witter 1999). Indeed, although the deterministic coupled
ocean/atmosphere models used for prediction of the 1997–
1998 El Niño were more accurate than for previous El Niño
events, indications are that many of these models would have
performed better had uniformly high-resolution tropical wind
� elds been available (Kerr 1998).

Unfortunately, there are no spatially and temporally com-
plete high-resolution observations of surface winds over the
tropical oceans. Thus the major scienti� c challenge here is
the development of physically realistic high-resolution trop-
ical wind � elds. Our fundamental scienti� c contribution is
the development and implementation of a statistical approach
to generate high-resolution wind distributions over large
expanses of the tropical ocean. To that end, we develop
a hierarchical Bayesian spatiotemporal dynamic model that
combines wind data from different sources, and background
physics, to produce realizations of high-resolution surface
wind � elds. The Bayesian approach is ideal for this application
because (1) it provides a mechanism for combining data from
very different sources, (2) it provides a natural framework in
which to include scienti� c knowledge in the model, and (3) it
provides posterior distributions on quantities of interest that
can be used for scienti� c inference.

Our statistical analyses use two strikingly different datasets.
The � rst dataset involves satellite-derived wind estimates that
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have high resolution in space but are limited in areal coverage
at any given time. Milliff and Morzel (2001) demonstrated
that the information from a single instrument of this type is
not suf� cient to resolve all of the meteorological events in the
surface wind � eld. The second dataset comprises wind esti-
mates, known as analyses, provided by the major weather cen-
ters. These provide complete wind � elds but have low spatial
resolution. Although the large-scale features of the tropical
atmosphere are generally well represented by these analysis
� elds, these � elds are unable to resolve many of the small-
to medium-scale features in the wind � elds needed to under-
stand the dynamics of the tropical ocean and atmosphere (e.g.,
Milliff et al. 1996). Hence, in isolation, neither of these two
datasets provides the breath of scienti� c information sought
by climatologists. Our Bayesian model combines these data
to yield information about winds at a useful spatial scale, and
in a manner that incorporates physical theory about the spa-
tiotemporal dynamics inherent in tropical surface winds.

We demonstrate (see Fig. 5) that our posterior wind � elds
contain much more � nely resolved features than do the cur-
rent state-of-the-art weather center wind � elds over the trop-
ics. Furthermore, based on external veri� cation with remotely
sensed cloud imagery, these higher-resolution features in the
wind � elds correspond to physically meaningful features of
the atmosphere. We emphasize that until satellite wind data
are assimilated adequately into numerical weather prediction
models of similar resolution, a Bayesian procedure of the kind
that we derive here provides the only source of high-resolution
tropical wind � eld information suf� cient for many aspects of
research regarding air–sea interactions and their effects on cli-
mate. Furthermore, the probability distributions for wind � elds
that we provide will for the � rst time allow scientists to con-
sider the distributional nature of phenomena that depend on
air–sea interaction.

The datasets used here are described in Section 2. The phys-
ically based spatiotemporal model that we have developed is
described in Section 3. By “physically based,” we mean that
substantial physical modeling and background science were
used in both development of the model and speci� cations of
priors on model parameters. The Bayesian implementation and
speci� c computational issues related to our analysis are dis-
cussed in Section 4. The huge datasets used and the large
number of unknowns modeled necessitated the development of
special algorithms. These developments are of general inter-
est in large-scale Bayesian analyses. Model veri� cation and
inference based on our wind model are described in Section 5.
A brief discussion is presented in Section 6.

2. WIND DATA

Because winds are vector quantities, they can be split into
orthogonal components. We use the standard decomposition in
which u represents the east–west (“x-direction”) component
and v represents the north–south (“y-direction”) component.
Although other decompositions are possible, we selected this
Cartesian decomposition for physical reasons; the equator is a
fundamental line of symmetry in the equatorial dynamics that
govern weather in the tropics and is a source of anisotropy
that discourages the use of any coordinate system other than
Cartesian (e.g., Gill 1982, pp. 436–463). We consider surface

wind components over a spatial domain in the western Paci� c
Ocean from 107� to 170� E longitude and 23�S to 24�N lat-
itude, as shown in Figure 1. This portion of the equatorial
Paci� c contains the “warm pool region” and is critical to
the forcing and maintenance of many weather and climate-
scale phenomena (e.g., Philander 1990). We focus on 6-hour
increments during the 2-week period from October 28, 1996,
through November 10, 1996. Tropical variability consistent
with these scales include, for example, westerly wind bursts,
equatorial Rossby wave propagation, and tropical storms. The
2-week time period is suf� cient to capture up to � ve such
events.

Although some in situ observations of ocean surface winds
are made from buoys and ships, they are rather sparsely dis-
tributed in space and time relative to land-based observation
networks. The world’s major meteorological centers take these
few observations and insert them into global-scale numeri-
cal weather prediction models to produce tropical wind � eld
analyses (e.g., Daley 1991). Hence the resulting data are not
measurements or observations in the traditional sense, but
rather are statistics computed as highly complex functions of
observations.

We consider weather center wind � elds from the National
Centers for Environmental Prediction (NCEP). These data rep-
resent surface winds (actually, 10 m above the surface) and
have a reporting period of 6 hours and spatial resolution of
nearly 2�, or about 200 km in equatorial regions. NCEP u-
winds for three consecutive 6-hour periods in early November
1996 are shown in Figure 2(a).

Wind data from the NASA scatterometer (NSCAT) instru-
ment are also used here. A scatterometer is a satellite-borne
instrument that emits radar pulses at speci� c frequencies and
polarizations toward the sea surface, where they are backscat-
tered by surface capillary waves (e.g., Naderi, Freilich, and
Long 1991). The backscattering is detected and related,
through a “geophysical model function,” to wind speed and
direction near the surface (usually 10 m; see, e.g., Stoffelen
and Anderson 1997; Wentz and Freilich 1997; Wentz and
Smith 1999). That is, as in the case of analysis � elds, these
data are not direct measurements of winds, but rather are func-
tions of backscatter detections.

Due to the polar orbit of these satellite platforms, the tem-
poral resolution of these data are relatively sparse and, over
the span of several hours, the spatial coverage area is relatively
small; see Figure 2(b). Each “snapshot” in time includes all
observations within a 6-hour window centered on the corre-
sponding analysis time. The NSCAT surface (i.e., 10-m) wind
data used here were produced by the NSCAT-1 model function
(Wentz and Freilich 1997). These data have a 50-km nomi-
nal spatial resolution, although the reported winds are actually
derived by applying the model function to an average of sev-
eral backscatter observations within a 50-km by 50-km obser-
vational “cell.”

Notation. Let Va4ri3 t5 and Ua4ri3 t5 denote the NCEP
analysis north–south and east–west, wind components at spa-
tial location 8ri 2 i D 11 : : : 1m9 and time 8t 2 t D 11 : : : 1 T 9.
The scatterometer (NSCAT) north–south (east–west) wind
component is denoted by Vs4Qrj3 t5 (Us4Qrj3 t5) at location
8Qrj 2 j D 11 : : : 1 pt9 and time 8t 2 t D 11 : : : 1 T 9. (The number
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Figure 1. Prediction Grid Locations Over the Equatorial Paci’ c Study Region.

of NSCAT observations, pt can be highly variable, see Fig. 2.)
We de� ne the “true” (i.e., noiseless) wind components as
v4si3 t5 and u4si3 t5 at spatial locations 8si 2 i D 11 : : : 1 n9 and
times 8t 2 t D 11 : : : 1 T 9. The cumbersome notation of index-
ing spatial locations is needed because we are faced with a
“change of support” problem: The NCEP and NSCAT data
represent different spatial scales, both of which differ from the
desired prediction sites si .

In the present example, we choose a 1-degree regular pre-
diction grid (Fig. 1) and consider 54 6-hour time increments
over the period from 0600 UTC (Coordinated Universal Time)
on October 28, 1996, to 1200 UTC on November 10, 1996.
We neglect small displacements in the prediction lattice that
are due to the curvature of the earth.

Next, let Vt denote an m C pt vectorization of the north–
south weather center and scatterometer observations at time t.
Similarly, Ut is the combined list of the data corresponding
to the east–west component. Also, let vt and ut be n vectors
of the “true” north–south and east–west wind components, at
prediction locations at time t.

Finally, we use the following notation to denote matrices
composed of columns of vectors representing intervals of time:
let 8V9B

A be the collection of vectors 8Vt 2 t D A1 : : : 1 B9.

3. HIERARCHICAL SPACE-TIME MODELS

A major dif� culty in the application of statistical spatiotem-
poral models in geophysical problems has been adequately
describing the complicated spatiotemporal covariance struc-
tures inherent in these contexts. (For an overview of traditional
spatiotemporal modeling approaches, see Wikle and Cressie
1999.) These methods are not suitable to the present prob-
lem in that they cannot easily account for propagation of
synoptic-scale weather disturbances, � ll “gaps” in the observa-
tions with realistic variance at all spatial scales, include mul-
tiple measurement errors and change of support for different
data sources, or incorporate huge amounts of data.

3.1 The Hierarchical Approach

Hierarchical models are ideal for extremely complex and/or
high-dimensional problems. In essence, the strategy is based
on the formulation of three primary statistical models or
stages:

¡ Stage 1: Data model: [data|process, ˆ1]
¡ Stage 2: Process model: 6process—ˆ27
¡ Stage 3: Prior on parameters: 6ˆ11 ˆ27

Here the bracket notation denotes probability distribution
(e.g., Gelfand and Smith 1990), and ˆ1 and ˆ2 generically
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Figure 2. NCEP and NSCAT Sampling Locations and u-Wind Component Value (ms 1) Within 6-Hour Time Windows Centered on 1200 UTC
on November 6, 1996, 1800 UTC on November 6, 1996, and 0000 UTC on November 7, 1996.

represent parameters introduced in the modeling. The idea is
to approach complex problems by breaking them into pieces—
in this case, a series of conditional models (e.g., Berliner
1996). The stage 2 model for the process (in our case, true
winds) can itself be speci� ed as a product of physically moti-
vated conditional distributions. By treating the spatiotemporal
variability as a series of relatively simple, yet physically based

conditional models, we can obtain spatiotemporal dependence
structures that are much more complicated (and more real-
istic physically) than could be speci� ed directly. Bayesian
analysis relies on the posterior distribution of the process
of interest and parameters given data: [process, ˆ1, ˆ2 —
data]. Recent examples of hierarchical Bayesian spatiotem-
poral models include that used by Waller, Carlin, Xia, and
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Gelfand (1997) for mapping disease rates. An overview of
hierarchical spatiotemporal dynamic models along with a geo-
physical application has been provided by Wikle, Berliner, and
Cressie (1998).

3.2 Stage 1: Data Model

We expect the wind data to be replete with complicated spa-
tiotemporal dependencies. However, conditional on the true
winds, we expect the complexity of this dependence to be
dramatically reduced. That is, stage 1 models only measure-
ment errors, not that portion of the complex structure present
in the data due to the structure of the true winds. The funda-
mental assumptions are that, conditional on the true process
8u9T

1 1 8v9T
1 , the data are independent with respect to time, and

the set of U observations is independent of the set of V obser-
vations. Speci� cally, we have that

68V9T
1 1 8U9T

1
—8v9T

1 1 8u9T
1 3 ˆ17 D

TY

tD1

6Vt
—vt3 ˆ176Ut

—ut3 ˆ170 (1)

In particular, we assume normally distributed errors,

Vt
—vt1èt Gau4Ktvt1èt5

and Ut
—ut1 èt Gau4Ktut1èt51 (2)

where Gau4�1A5 refers to a multivariate Gaussian distribution
with mean � and covariance matrix A. We assume that the
covariance matrices èt are diagonal with unknown variances
‘ 2

B , for NCEP data at sites on the boundary of the NCEP grid,
‘ 2

I for NCEP data at interior sites on the NCEP grid, and ‘ 2

for NSCAT observations; that is, the � rst m diagonal elements
of èt are equal to either ‘ 2

I or ‘ 2
B , and the remaining pt are

equal to ‘ 2. Further, for each t, Kt is a speci� ed 4mC pt5� n

matrix that maps the prediction grid locations to the observa-
tion locations.

Several issues surround our assumptions about the data-
acquisition process. First, we assume that conditional on
true winds, the scatterometer errors and the NCEP analy-
sis errors are independent. This is quite plausible, because
the NCEP did not use scatterometer data in producing wind
� elds. Second, evidence in the literature points to the plau-
sibility of our assumptions that the scatterometer errors are
mutually conditionally independent and have homogeneous
variance, and that the east–west and north–south component
errors are independent. For example, Freilich (1997) demon-
strated that an independent and normally distributed random
error model for scatterometer velocity components is con-
sistent with observed distributions for wind speed. Freilich
and Dunbar (1999) considered comparisons between collo-
cated satellite wind estimates and direct measurements from
ocean buoys in a validation study. They concluded that the
independent-component error model, with standard deviations
equal to 1.3 m/s (for both components), is appropriate for
NSCAT data. Furthermore, over the relatively small geograph-
ical region considered here, these references suggest that the
homogeneous variance assumption is reasonable. Haslett and
Raftery (1989) showed that application of a square-root trans-
formation may enhance both homogeneity and normality in

wind measurements. As suggested by Freilich (1997), such a
homogeneity-of-variance transformation of wind speed is con-
sistent with the independent, homogeneous normal random
measurement error model for the Cartesian wind components.
Finally, the assumption that NCEP analysis errors are mutu-
ally independent seems to be the least tenable assumption in
view of the complex nature of the numerical and statistical
methods used in the production of such information. The for-
mulation of genuine covariances for analyzed � elds is a major
research area in its own right, and well beyond the scope of
this article. We believe that the independence assumption is
not critical for our results.

Mapping Matrices. We partition the mapping matrices as
Kt

D 6K0
a1K0

s4t57
0, where Ka and Ks4t5 are m � n and pt

� n
matrices. Because the prediction grid is at a � ner resolution
than the NCEP data, Ka acts by assuming that the condi-
tional means of the data are smoothed versions of the “true”
winds on the lattice. This “change-of-support” approach is
further justi� ed because NCEP data have been shown to be
too smooth at large scales (e.g., Milliff et al. 1999; Wikle,
Milliff, and Large 1999). Speci� cally, the Ka matrix consid-
ers the nearest nine prediction grid locations within some dis-
tance D (D D 165 km) and weights those locations linearly
by wi

D 4D ƒdi5=w ü , where di is the distance between the ith
prediction grid location and the NCEP datum location and w ü

normalizes the weights to sum to 1.
Each Ks4t5 is an incidence matrix of 0’s and 1’s that simply

maps the conditional mean of an NSCAT observation to the
nearest grid process location. The error induced by this map-
ping is related to the chosen prediction grid resolution. Effec-
tively, by using the mapping matrix, Kt , we allow the wind
process to “live” on a � ne-resolution regular grid. The reso-
lution of this grid could be so high as to allow the NSCAT
data points to each correspond to a unique lattice location.
Practically, a balance must be sought between computational
expense, grid resolution, and resolution of the physics that one
is seeking to describe or model. More-complicated approaches
to parameterizing both Ka and Ks4t5 are possible (see Wikle
and Berliner 2001). However, for computationally purposes,
these mapping matrices must be very sparse (see Sec. 4.1).

3.3 Stage 2: Priors on the Process

Our task is to formulate a joint probability model for the
gridded wind process, 8u9T

1 1 8v9T
1 . We begin by decomposing

each of the wind processes into three physically meaningful
components. The decomposition and models for the resulting
components were developed based on our physical and sta-
tistical understanding of the problem. After a review of that
reasoning in the following section, we present the speci� c sta-
tistical models used for each of the three components.

3.3.1 Decomposition of the Wind Process. In the equa-
torial region, much of the large-scale variability in wind � elds
can be represented by treating the atmosphere as a thin � uid;
that is, the depth of the atmosphere is much smaller than
characteristic horizontal length scales (e.g., Gill 1982; Holton
1992). However, the thin-� uid approximation is incomplete
in that it excludes small-scale motions that are fundamentally
three-dimensional, and it is based on a zero-mean background
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� ow. The following decompositions for our statistical model
address these de� ciencies while retaining the convenience of
the thin-� uid approximation:

ut
D Œu

C uE
t

C Qut (3)

and
vt

D Œv
C vE

t
C Qvt 0 (4)

Here Œu and Œv are spatial means for the respective wind
components, uE

t and vE
t are the component contributions from

the thin-� uid approximation, and Qut and Qvt represent small-
scale motions.

We assume that the components 8Œu1Œv1uE
t 1vE

t 1 Qut1 Qvt9

are mutually independent. The assumption of independence
between the elements of ut and vt requires physical justi� ca-
tion, which is discussed in Section 3.3.2.

Large-Scale Wind Components. The thin-� uid approxima-
tion for large-scale tropical dynamics also involves compan-
ion approximations. Important among these are the neglect of
nonlinear terms in the momentum equations and the simpli-
� cation of spherical effects to a linear dependence on lati-
tude. These approximations lead to a system referred to in the
geophysical literature as the “linear shallow-water equations
on the equatorial beta plane” (e.g., Gill 1982; Holton 1992).
Looking for solutions in the form of two-dimensional waves
in the Cartesian 4x1 y5 plane leads to an ordinary differential
equation for vE4x1 y3 t5, from which corresponding solutions
for uE4x1 y3 t5 can be derived. The solutions for vE4x1 y3 t5

can be written as

vE 4x1 y3 t5 D
X

p

X

l

vE
l1 p4x1 y3 t51 (5)

where the vE
l1 p4x1 y3 t5 represent the equatorial normal mode

(ENM) orthogonal basis set (Matsuno 1966). The waves asso-
ciated with individual ENMs are identi� able in observations
(e.g., Wheeler and Kiladis 1999), and they form the founda-
tion for much of our understanding of tropical dynamics in
the atmosphere and ocean.

In practical applications, the in� nite series (5) is often trun-
cated to a few leading modes, such that

vE4x1 y3 t5
PX

pD1

LX

lD0

vE
l1 p4x1 y3 t5 (6)

for some choice of P and L; here we use set of P D 2 and
L D 3, yielding eight modes for vE . The ENM theory applies to
motions with length scales as long as the circumference of the
planet. The prediction domain size limits the maximum length
scale in our problem to a small fraction of the circumference.
In theory, energy can be distributed across an in� nity of modes
in the series (5). But Wheeler and Kiladis (1999) demonstrated
that most of the energy is distributed in clusters of a relatively
few modes, suggesting that the truncation used in (6) is not
too severe.

It can be shown that each mode can be written as

vE
l1p4x1 y3 t5 D Vl4y5 cos4kpx ƒ —l1pt51 (7)

where Vl4y5 describes the north–south structure of the lth
mode; kp

D 2� p=Dx, where p is the east–west wave number
and Dx is the east–west domain length; and —l1 p is the dis-
persion frequency of the 4l1p5th wave mode solution (i.e., it
describes the propagation speed and direction of the ENM).
Further, the north–south structure can be shown to be propor-
tional to Hermite polynomials that are exponentially damped
away from the equator (e.g., Gill 1982),

Vl4y5 D Hl4y
ü 5 exp4ƒ05y ü 251 (8)

where Hl45 is the lth Hermite polynomial (with l correspond-
ing to the number of nodes in the north–south direction) and
y ü is the “normalized” latitudinal distance from the equator.
Speci� cally, y ü D ‚0y=4

p
ghe=‚05

05, where ‚0 is a constant
related to the ratio of the earth’s angular velocity to its radius,
g is the gravitational acceleration, and he is the “equivalent
depth” of the thin � uid. Of the parameters considered here,
Dx (and thus kp), ‚0, and g are � xed and known. The disper-
sion frequency (—l1p) and the equivalent depth parameter (he)
cannot be precisely determined from the thin-� uid approxi-
mation theory; however, plausible values can be estimated via
data analysis (e.g., Wheeler and Kiladis 1999). In the case
of the dispersion frequency, we consider a reparameteriza-
tion using random components (as discussed later) with pri-
ors determined from historical data analysis (see Sec. 3.4.1).
For the equivalent depth parameter, it is natural (as Bayesians)
to model he as random and use this historical information to
construct a prior distribution. But in view of the complex way
in which he enters the model through the Hermite polynomi-
als and the already complicated scope of our model, a fully
Bayesian analysis seems prohibitive. We simply set he

D 25 m
which is what our prior mean would be based on the discus-
sion of Wheeler and Kiladis (1999). Fortunately, the analysis
does not seem particularly sensitive to the value of he (see
Sec. 4.4).

An elementary trigonometric identity allows us to rewrite
(7) as

vE
l1 p4x1 y3 t5 D cos4—l1pt56Vl4y5 cos4kpx57

C sin4—l1 pt56Vl4y5 sin4kpx570 (9)

In view of the approximations associated with this devel-
opment, that real winds are very unlikely to propagate like
perfect sinusoids as suggested in (9). Furthermore, these
expressions were obtained in continuous space and time; our
statistical model is for gridded winds de� ned on a limited
domain. To account for such sources of uncertainty, we embed
the physical modeling into a stochastic model. Speci� cally,
we replace the leading cosine and sine terms in (9) with ran-
dom coef� cients. That is, for each of our grid points si ²
4xi1 yi51 i D 11 : : : 1 n, we let

vE
t 4si5 D

PX

pD1

LX

lD0

8al1p314t56Vl4yi5 cos4kpxi57

C al1p324t56Vl4yi5 sin4kpxi5791 (10)

where al1 p3 14t5 and al1p3 24t5 are assumed to be random coef-
� cients. Allowing these parameters to be random greatly
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increases the � exibility of our model. In addition, we see that
the cosine and sine terms that they replace suggest a natural,
physically based prior. The model for the a’s is described in
the following section.

Our stochastic version of (6) takes the form

vE
t

D êav
t 1 (11)

where vE
t is the vector of vE winds for all prediction grid

locations at time t and av
t is a vector of pairs of a’s for

each of the J D P � 4L C 15 combinations of p and l (recall
that P D 2 and L D 3, so av

t is of length 16). The matrix
ê is obtained by evaluating the ENM basis functions at grid
points. Speci� cally, for a total of J combinations, ê is an
n � 2J matrix with columns ”24jƒ15C14x1 y5 D Vj4y5 cos4kjx5
and ”24jƒ15C24x1 y5 D Vj4y5 sin4kjx5 for j D 11 : : : 1 J , eval-
uated at the coordinates of the n prediction grid locations.
Figure 3 shows the structure of two of these basis functions,
4l1 p5 D 40115 and 4l1p5 D 421 15. A similar model, uE

t
D êau

t ,
is also used.

Small-Scale Wind Components. The small-scale wind
components Qvt and Qut represent scales and types of dynam-
ical processes not explained by the thin-� uid approximation
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Figure 3. Examples of Shallow-Water Equatorial Normal Mode Basis
Functions Used in the Analysis. (a) North–south Hermite mode l D 0;
East–west Fourier mode domain wavenumber p D 1. (b) l D 2, p D 1.

near the equator. We would like these processes to represent
the scales that are resolved in the NSCAT sampling and are
commonly thought to display multiresolution spatial behavior
associated with fractal processes. We chose to represent them
in terms of wavelet basis functions with compact support,

Qvt
D ëbv

t 1 (12)

where bv
t is an n-vector of temporally evolving random coef� -

cients and ë is an n� n matrix containing Daubechies wavelet
basis functions of order two (evaluated on the prediction grid),
modi� ed for closed domains (e.g., Cohen, Daubechies, and
Vial 1993); the “order” is the number of vanishing moments
of the wavelets. A similar decomposition is speci� ed for Qut .

Our use of wavelets is motivated by the observation that
these small-scale processes are typically localized in space
and time. The speci� c choice of the foregoing multiresolu-
tion wavelet basis is based on its ability to represent fractal
processes (e.g., Wornell 1993). This is critical in attempting
to explain the multiscale turbulence structure of wind � elds
(see Sec. 3.4). Moreover, this wavelet basis has advantages in
terms of computational ef� ciency (see Sec. 4).

Spatial Mean. The spatial mean processes Œv and Œu

account for the climatological mean wind structure. In the
tropical western Paci� c Ocean, the climatological winds are
easterly (i.e., out of the east, toward the west). Note that
our domain contains land areas (see Fig. 1). Given that near-
surface wind behaves differently over land and sea (e.g., sur-
face heating and/or frictional differences), the spatial mean
� eld should include a dichotomous variable to delineate
whether a prediction grid location is over land or sea. Finally,
although the climatological wind structure can change with
season and horizontal extent, our spatial domain is small
enough and our temporal domain short enough (approximately
2 weeks) that we need not consider more complicated spatial
or time-varying mean � elds in this analysis.

3.3.2 Process Model Speci�cation. The decomposi-
tions (3) and (4) and subsequent modeling lead to the statisti-
cal models

ut
D Œu

C êau
t

C ë bu
t (13)

and
vt

D Œv
C êav

t
C ë bv

t 0 (14)

Our hierarchical Bayesian model at this stage requires speci-
� cation of a parameterized joint distribution

6Œu1 Œv1 8au
t 9T

0 1 8av
t 9

T
0 1 8bu

t 9T
0 1 8bv

t 9
T
0
—ˆ71 (15)

where 8au
t 9T

0 represents the collection 8au
t 2 t D 01 : : : 1 T 9, and

so on, and ˆ generically denotes a collection of parameters
to be speci� ed. The crucial point is that the dynamic aspect
of our modeling is through time series models for the a and
b vectors. We use autoregressive models for these evolutions.
Hence we have appended their initial states to the collection
of unknowns. Priors for these initial states are discussed at the
end of this section.
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As noted earlier, a critical modeling assumption is that all
six components of the gridded winds in (15) are mutually
conditionally independent; that is, (15) is factored as

6Œu1Œv
—ˆ768au

t 9T
0
—ˆ768av

t 9
T
0
—ˆ768bu

t 9T
0
—ˆ768bv

t 9
T
0
—ˆ70 (16)

Our justi� cation of the priori independence assumption is
based primarily on physical grounds. The theory of nondi-
vergent two-dimensional turbulence implies that the velocity
components are uncorrelated across all spatial scales (e.g.,
Freilich and Chelton 1986). As discussed in Section 3.4.2, we
rely strongly on theoretical and empirical results suggesting
that tropical surface wind � elds behave like turbulent � elds. In
addition, Freilich and Chelton (1986) showed that the empir-
ical cross-spectral densities of tropical surface wind compo-
nents are very small, justifying the general prior modeling
assumption of independence. Of course, dependence can arise
a posteriori, especially in the presence of physically mean-
ingful structures (e.g., storms). For example, for our 2-week
study period, posterior analysis yields a correlation between
wind components, averaged over both time and space, of .3.

We next describe the prior distributions in (16). For econ-
omy in presentation, we describe in detail only the models for
the v-components and hence suppress dependence on v. The
models for the u-components were developed similarly and
are summarized at the end of this section.

Spatial Mean. We chose a simple spatial regression model
for Œ,

Œ D Pƒ1 (17)

where P is a speci� ed design matrix. In our analysis, this
includes an overall intercept term and a land/sea indicator vari-
able (1, land; 0, sea). The regression coef� cient vector ƒ is
then length 2 and is assigned a bivariate normal prior dis-
tribution, ƒ Gau4ƒo1 èƒ5. The hyperparameters of this dis-
tribution were speci� ed based on an ordinary least squares
regression of NCEP data from a 4-month period roughly cen-
tered around, but excluding, our study period. Speci� cally, for
the v and u components the prior means were 4ƒ041 0025 and
4ƒ20711095. We assumed that the prior variance-covariance
matrices were diagonal with relatively small variances. We
used preliminary data analysis in developing these speci� ca-
tions. Because our study period is only 2 weeks long, genuine
climatological means (even seasonal means) would not serve
well in centering the model. Further, these mean parameters
were not of interest in and of themselves; they merely offered
a simple method for adjusting for a land-versus-sea effect.

Dynamic Models. One of the key features of our approach
is that we seek to model empirically the atmospheric dynam-
ics, so that wind information observed at time t can in prin-
ciple propagate to nearby locations at time t C 1, where there
may be fewer observations (e.g., see Fig. 2). Thus we assume
that the coef� cient vectors (a’s and b’s) are conditionally inde-
pendent and follow � rst-order Markov vector autoregression
(VAR) models: for t D 11 : : : 1 T ,

at
—Ha1atƒ11 è‡a

Gau4Haatƒ11è‡a
5 (18)

and

bt
—Hb1 btƒ11 è‡b

Gau4Hbbtƒ11è‡b
51 (19)

where Ha and Hb are VAR parameter matrices for the ENM
and wavelet coef� cients and è‡a

and è‡b
are the associated

VAR innovation covariance matrices.
To initialize these VAR models, we assumed that a0

Gau4Œa1èa5 and b0 Gau4Œb1èb5. The hyperparameters Œa,
èa, Œb, and èb were speci� ed based on an assumption of
mean 0 and diagonal covariance matrices with large variances.
Speci� cally, èa was assumed to have variance 100 and èb

was given prior variance corresponding to the multiresolution
scaling discussed in Section 3.4.2.

3.4 Stage 3: Priors on Parameters

We assume that the parameters‘ 2
I 1‘ 2

B1‘ 21Ha1Hb1 è‡a
, and

è‡b
are mutually independent. Similar formulations are used

for the parameters relevant to the u-component model.

3.4.1 Autoregressive Parameter Matrices. As suggested
by the derivations in Section 3.3.1, to describe wave struc-
tures that propagate in time, each pair of coef� cients al1p31 and
al1p3 2 must be dependent. A simple model for such evolution
is a � rst-order vector autoregression,

"
al1p3 14t5

al1 p324t5

#
D Ha

l1p

"
al1p3 14t ƒ „t5

al1p3 24t ƒ „t5

#
C ‡a

l1 p4t51 (20)

where Ha
l1p is a 2� 2 propagator matrix, the ‡a

l1p4t5 are vectors
of random innovations, and „t is some time interval (.25 days
in our case). Application of simple trigonometric identities
for cos4—l1p4t C „t55 and sin4—l1p4t C„t55 suggests physically
based prior information for the structure of Ha

l1p:

Ha
l1 p

D
"

cos4—l1p„t5 ƒ sin4—l1p„t5

sin4—l1p„t5 cos4—l1p„t5

#
0 (21)

Given an equivalent depth he, —l1p can be determined from
data analysis. For the v-wind, we used the values suggested
by Wheeler and Kiladis (1999) as prior means, namely —l1p

D
2� 6ƒ01331ƒ0181ƒ0081 ƒ005, .67, .59, .75, .75] for (l, p)
D 6401 15, (0, 2), (1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3,2)].
Our prior knowledge regarding the last two modes is com-
paratively uninformed. Note that in some 4l1p5 combinations,
wave modes with the identical horizontal structure (i.e., basis
function) can have different propagation characteristics. For
simplicity, we chose for our prior the “dominant” wave mode
suggested by the data analysis of Wheeler and Kiladis (1999).
Thus vec4Ha

l1 p5 is speci� ed to be Gaussian with means given
by (21) and diagonal covariance structure with relatively large
prior variances all set to 100. Sensitivity analysis showed that
the posterior wind � elds were not sensitive to these speci� ca-
tions. Similar priors were developed for the u-components.

Our speci� cation for the prior on the VAR matrix Hb is
based more on a subjective sense of the dynamics. We expect
small-scale features to have some persistence over the 6-hour
time intervals considered in this model. However, it is not
clear from theory what the prior means and variances should
be or whether we should allow spectral interaction. Interaction
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of the spectral modes would be implied if we allowed nonzero
off-diagonal elements in Hb . The added level of complexity
required to implement such a formulation was not justi� ed
in the current application. Instead, an effective interaction of
scales is parameterized by a fractal innovation variance struc-
ture, as described in Section 3.4.2. We assume that the ele-
ments of Hb ² diag46hb4151 : : : 1 hb4n5705 are distributed as
independent Gaussians,

hb4j5— N 4Œhb
4j51‘ 2

hb
4j55 2 j D 11 : : : 1 ka0 (22)

For the hyperparameters, we chose Œhb
4j5 D 04 and ‘ 2

hb
4j5 D

001 for all j. These values re� ect our subjective physical prior
of persistence in small-scale modes. Sensitivity analyses on
these hyperparameters showed that the posterior wind � elds
were not extremely sensitive to the speci� cation.

3.4.2 Autoregressive Innovation Covariance Matrices.
The VAR conditional covariance matrix è‡a

is assumed to be
block diagonal, with J 2� 2 covariance matrices, è‡a

4l1 p5 on
the diagonal. For each l D 01 : : : 1L and p D 11 : : : 1P , these
covariance matrices are assumed to be mutually independent
and distributed as

è‡a
4l1p5ƒ1 W 44ŠaS‡a

4l1p55ƒ11Ša51 (23)

where W45 is a Wishart distribution with degrees of freedom
Ša and expectation S‡a

4l1p5ƒ1. For the v-component, these
hyperparameters were speci� ed to be Ša

D 2 and S‡a
4l1p5 D

‘ 2
‡a

4l1 p5I, where ‘ 2
‡a

4l1p5 D 4s24l1p5=2561ƒ 4cos4—l1p„t55
27.

In this case, s24l1 p5 are climatological variances for each wave
mode as observed by Wheeler and Kiladis (1999); that is,
s24l1p5 D (2,133, 2,681, 3,047, 7,922, 305, 335, 200, 200), for
the eight ENMs used here. The posterior wind � elds are not
overly sensitive to the choice of these hyperparameters. A sim-
ilar speci� cation was developed for the u-component portion
of the model.

For the wavelet coef� cient innovation covariances, we
assumed that

è‡b
² diag4‘ 2

‡b
4151 : : : 1‘ 2

‡b
4n550 (24)

The choice of the hyperparameters were based on physical
ideas. The spatial energy spectrum of tropical surface winds
has been shown to behave like a self-similar random fractal
process (Freilich and Chelton 1986; Wikle et al. 1999), in
which the energy spectrum is proportional to the inverse of
the spatial frequency taken to some power,

Sv4k5 / ‘ 2
v

—k—d
1 (25)

where Sv4k5 is the spatial energy spectrum of v at spatial
frequency k, ‘ 2

v is the wind component variance, and d is
the decay rate (e.g., Wornell 1993). In the tropical surface
wind case, d has been shown to be approximately equal
to 5=3 over a broad range (1–1000 km) of spatial scales
(Wikle et al. 1999). This spectral decay rate is consistent with
famous results from turbulence theory (Kolmogorov 1941a,b;
see also Rose and Sulem 1978). It is also a robust empir-
ical result in that recent observational studies of surface

winds (Freilich and Chelton 1986; Milliff et al. 1999; Wikle
et al. 1999) and winds aloft (Lindborg 1999; Nastrom and
Gage 1985) demonstrate a similar power law relation without
the conditions for two-dimensional isotropic turbulence and
an inertial subrange required by the theory of Kolmogorov.
Wornell (1993) derived the relationship for variances of such a
fractal process in terms of scales of a wavelet multiresolution
analysis. Chin, Milliff, and Large (1998) extended this result
to the two-dimensional case by assuming identical distribution
of the “diagonal,” “horizontal,” and “vertical” multiresolution
wavelet coef� cients. They showed that the variance of two-
dimensional wavelet coef� cients is proportional to 2ƒl41Cd5ƒ1,
where l is the level of the multiresolution decomposition
(l D 11 : : : 1Nl). We use these results, along with the result that
the innovation variance for a � rst-order autoregressive process
can be written in terms of the autoregressive coef� cient and
marginal variance (e.g., ‘ 2

‡b
D 61 ƒ h2

b7‘ 2
b ), to derive the prior

variances for each multiresolution level in the ‡b process,

‘ 2
‡b

4l5 / 61ƒ h2
b4l5762ƒl41Cd5ƒ171 (26)

where we substitute the prior mean Œhb
D 04 for hb4l5 and

let d D 5=3. We use this relationship to determine the inverse
gamma ( IG) priors,

‘ 2
‡b

4j5—q‡b
4j51 r‡b

4j5

IG4q‡b
4j51 r‡b

4j55 2 j D 11 : : : 1 kb0 (27)

That is, we de� ne all spectral indices within a given
multiresolution scale (l) to have independent inverse gamma
distributions with parameters q‡b

4l5 and r‡b
4l5 determined by

assuming a mean given in (26) and a suitable variance. For
instance, we give a large variance to the largest wavelet scales,
which overlap with the large-scale equatorial modes and can
adequately be determined by the data. Alternatively, we assign
small (inverse gamma) prior variances for small and medium
wavelet scales where observational data are less abundant.
This is the most critical prior assumption in the Bayesian anal-
ysis! Sensitivity analysis has shown that if we do not give
narrow priors on the small- and medium-scale wavelet modes,
the posterior spectrum will not follow the 5/3 slope over all
spatial scales, as is necessary for realistic wind � elds. This is
simply because some large spatial regions are not sampled by
the scatterometer. Thus, by using the narrow priors, we are in
effect constraining the posterior to physical reality, but in such
a way that it can be informed by the data, if available.

3.4.3 Measurement Error Variances. The measurement
error variances for the data model were assigned inverse
gamma distributions ‘ 2 IG4q1 r5, ‘ 2

I IG4qI 1 rI5, and
‘ 2

B IG4qB1 rB5. As noted in Section 3.2, Freilich and Dunbar
(1999) showed that the NSCAT measurement error variance
is approximately 1.7 (m/s)2. Because we ignored “gridding
error” in both space and time, we in� ated this value to a
prior mean of 2.0 (m/s)2 and assumed a prior variance of .1.
Hence we set q D 42 and r D 00122. There is little infor-
mation in the literature concerning NCEP measurement error
variances. We have partially accounted for the overly smooth
nature of NCEP winds via the Ka matrix, and so suggest that
the measurement error variance should be about the same as
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found for NSCAT [1.7 (m/s)2] at interior NCEP locations and
twice that [3.4 (m/s)2] at boundary grid locations. This latter
assumption follows because fewer prediction grid locations are
available for the change of support averaging (see Sec. 3.2).
However, to re� ect our lack of certainty, we assigned larger
prior variances (.3) than for the NSCAT variance. Thus we set
qI

D 110631 rI
D 005531 qB

D 40053, and qB
D 00074. Our poste-

rior wind � elds were not extremely sensitive to these choices.

4. BAYESIAN ANALYSIS

The fundamental product of a Bayesian analysis is the pos-
terior distribution of all unknowns. Explicit formulas for the
posterior distribution for large complicated hierarchical mod-
els such as those presented here are intractable. Hence we use
a Markov chain Monte Carlo (MCMC) method—speci� cally,
a Gibbs sampler.

4.1 Computation

Our example analysis involve 64 � 48 � 54 1661000
prediction locations in space (i.e., 64 � 48) and time (i.e.,
54), and we have a large amount of data to ingest into
the model ( 2001000 observations over 14 days). Deriva-
tion of the full conditional distributions used in a basic
Gibbs sampler implementation is straightforward; the rel-
evant full conditionals are available on the Web at
http://www.stat.missouri.edu/ wikle/trop_wind_pap.html. But
the high dimensionality of some of these distributions pre-
cludes the use of traditional sampling algorithms. For instance,
consider the full conditional distribution for the wavelet
coef� cients,

bt
—¢ Gau6Aƒ1

t gt1Aƒ1
t 71 (28)

for t D 11 : : : 1 T , where

At ² 4ë 0K0
tè

ƒ1
t Ktë C èƒ1

‡b
C H0

bè
ƒ1
‡b

Hb5ƒ1 (29)

and

gt ² 44Vt
ƒ KtŒv

ƒ Ktêav
t 5

0èƒ1
t Ktë

C bv 0

tƒ1H
v0

b èƒ1
‡b

C bv 0

tC1è
ƒ1
‡b

Hb5
00 (30)

Each At is a 31072 � 31072 matrix, and many of the matri-
ces from which it is computed are huge (e.g., Kt can be as
large as 31072� 61481). Standard methods for the generation
of very high-dimensional multivariate normal random variates
(see, e.g., Ripley 1987) are impractical, because we must sam-
ple from such high-dimensional distributions for each time t
and over many Gibbs iterations. Fortunately, the sparse spec-
i� cation of Kt can be exploited computationally (e.g., Press,
Flannery, Teukolsky, and Vetterling 1986, sec. 2.10). Simi-
larly, the models for temporal evolution parameters (e.g., Hb

and è‡b
) involve sparse (e.g., diagonal) matrices. Further,

computations for the multiresolution wavelet transform are fast
(order-n operations). The net result is that matrix multiplica-
tions of the form Atw, for any n-vector w, can be performed
in order-n operations.

To make sampling from such a distribution practical on a
high-end workstation, we use iterative linear methods. Specif-
ically, we use a conjugate gradient solver (e.g., Golub and

van Loan 1996, sec. 10.2). Details of this sampling approach
are given in the Appendix. A key strength of the conjugate
gradient approach is that the sparse operations described in the
previous paragraph can be exploited. The iterative solver ter-
minates after a preselected convergence criterion is met. The
sample obtained is an approximate sample from the true full-
conditional distribution. We can control the degree of approx-
imation by selecting a more or less rigorous convergence
criterion. For the results presented here, we have prescribed
a rather rigorous convergence criterion (see the Appendix).
If larger spatiotemporal domains are of interest, then trade-
off between computation time and the degree of convergence
becomes important.

4.2 Gibbs Sampler Convergence

The Gibbs sampler was implemented separately on both the
east–west (u) and north–south (v) wind components. (This is
valid under all of the conditional independence assumptions
described earlier.) Strategies to assess the convergence of a
Gibbs sampler in high-dimensional models (e.g., 105 param-
eters) such as presented here are not well developed. We base
our convergence diagnosis on visual assessment of randomly
and subjectively chosen model parameters obtained from pilot
simulations with varying starting values. Along with perform-
ing a visual assessment, we examined the Gelman and Rubin
(1992) convergence monitor. These assessments suggested no
reason to reject convergence after about 700 iterations. We
then ran a single chain (2,400 iterations) and discarded the
� rst 800 iterations. We based inference on the remaining
1,600 samples.

4.3 Posterior Wind Process

A particularly interesting time period in our data cen-
ters on the mature phase of tropical cyclone Dale. In par-
ticular, consider the u-component posterior mean wind � eld
for 0000 UTC on November 7, 1996 Figure 4(a) shows the
NCEP weather center u-wind component � eld for this period,
Figure 4(b) shows our (estimated) posterior mean for the u-
wind component, Figure 4(c) shows the � eld of posterior
means for the u-wind spatial mean plus the equatorial wave
modes (i.e., Œu

C êau
t ), and Figure 4(d) shows the associ-

ated wavelet mode posterior mean component (i.e., ë bu
t ). The

posterior wind � eld has signi� cantly more small-scale spatial
structure than the NCEP � eld. Recalling the NSCAT sampling
for this period (see Fig. 2), it is clear that there is small-scale
structure in regions for which small-scale observations were
not available. This is a crucial and desirable feature of our
modeling strategy.

4.4 Sensitivity

Assessing sensitivity to our prior/model speci� cations is
extremely dif� cult because of the model’s size and complex-
ity. We performed some sensitivity analyses one parameter at a
time, by rerunning the Gibbs sampler with different values for
each parameter, albeit with fewer iterations. We would expect
interactions among sensitivities of various models and pri-
ors on parameters at various levels, but performing “complete
factorial” sensitivity experiments is not feasible. We inves-
tigated sensitivities mainly by visually inspecting the wind
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Figure 4. East-West (u) Component of Wind at 0000 UTC on November 7, 1996 (in ms 1). (a) NCEP u-wind component; (b) posterior mean of
total “blended” u-wind [i.e., sum of components shown in (c) and (d)]; (c) posterior mean of u-wind spatial mean component (Œ) plus equatorial
mode components (êat ); (d) posterior mean of wavelet mode u-wind components (ëbt ).

� elds and examining the empirical spatial spectrum of the
posterior winds to see how it compared to the desired 5/3
slope discussed in Section 3.4.2. The posterior wind � elds are
not sensitive to reasonable choices of the equivalent depth he,
NCEP weighting scheme (Ka), and hyperparameters on mea-
surement error variances. Similarly, the posterior wind � elds
are not overly sensitive to the hyperparameters for ƒ, Ha

l1p ,
è‡a

4l1 p5, and Hb . But as mentioned in Section 3.4.2, the
posterior wind � elds are very sensitive to the priors on è‡b

,
which must be narrowly centered around the required fractal
variances that give the desired 5/3 spatial spectra. This is nec-
essary to ensure proper variability in the posterior winds over
areas and time periods where NSCAT sampling is absent.

5. INFERENCE AND MODEL ASSESSMENT

Though again limited by model size and complexity,
we considered three “validations”: external/physical, inter-
nal/physical, and NSCAT data hold out/resample.

5.1 External Physical Veri’ cation and Inference

As stated in Section 1, to understand convective processes
in the tropical atmosphere, one needs a detailed view of the

surface wind � eld and its horizontal derivatives. Speci� cally,
we consider the divergence of the surface wind � eld. The
divergence, de� ned at a point as ¡u=¡x C ¡v=¡y, measures the
overall rate at which air is being transported away from that
point. Conversely, if the sign of the divergence at a location
is negative, then air is converging on the point. Convergence
at the surface can be related, through a continuity equation, to
upward vertical motion. If suf� cient moisture is available in
the atmosphere, then this rising motion leads to the formation
of clouds and, through nonlinear dynamic and thermodynamic
processes, the possibility of a tropical storm associated with
deep convection. This suggests that external veri� cation of our
model would involve comparing cloud imagery with diver-
gence � elds calculated from our posterior wind � elds.

Figure 5(a) shows wind vectors and gridded estimates of
divergence for a subset of the spatial domain at 0000 UTC
on November 7, 1996 based on the low-resolution NCEP
data only. This period corresponds to the mature phase of
tropical cyclone Dale. The NCEP � eld represents the state-
of-the-art wind and divergence � elds currently available.
Figure 5(b) shows a cloud top (or “brightness”) temperature
image for the same period as observed from the Japanese GMS
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Figure 5. (a) NCEP Divergence (s 1) and Wind Fields (direction of arrows correspond to wind direction, and length corresponds to magnitude)
for a Subregion of the Prediction Grid at 0000 UTC on November 7, 1996; (b) Cloud Top Temperature (deg K) Satellite Imagery for the Same
Period; (c) Corresponding Blended Posterior Mean Divergence and Wind Fields.
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satellite. Colder cloud top temperatures on this plot generally
correspond to higher clouds, which in turn are indicative of
deep convection and tropical storm activity. Thus areas of
clouds in Figure 5(b) should be associated with darker blue
areas (convergence) in Figure 5(a). The comparison between
the NCEP divergence � eld and this cloud imagery clearly
shows that the NCEP � eld does not capture the conver-
gence associated with the cloud structures and bands of deep
convection associated with the tropical storm. Alternatively,
Figure 5(c) shows the posterior mean wind vectors and sur-
face divergence for the same period from our analysis. The
use of NSCAT winds and a model capable of space-time prop-
agation have added detail not present in the NCEP analysis.
In particular, note the substantial agreement between areas of
convergence in the wind � eld and cloud bands in the tropi-
cal cyclone. The physical agreement between convergence and
cloud imagery shown here provides very strong physical evi-
dence that the model is performing well.

5.2 Internal Physical Veri’ cation

An important check on our model is obtained by exam-
ining realizations from the posterior distribution. Figure 6
shows divergence/wind plots for two Gibbs-sampled realiza-
tions (widely separated in “Gibbs time”) for the cyclone Dale
period shown in Figure 5. These realizations are physically
realistic, suggesting no reasons for questioning the plausibility
of the posterior distribution. Furthermore, Figure 6(c) shows
the posterior standard deviation for divergence at this same
time. Note that, as expected, the “tracks” of low standard devi-
ation correspond to the satellite sampling paths (see Fig. 2).

5.3 Hold Out/Resample Veri’ cation

Although it would be useful to inspect residuals from our
model, we do not have residuals in the traditional sense. Our
data sources re� ect winds at either coarser (NCEP) or much
� ner (NSCAT) spatial scales. The modeled wind process is
never observed! Nonetheless, we investigated the model’s abil-
ity to generate plausible observational data.

Consider the time period represented in Figure 5. We ran
a separate Gibbs sampler but left out the NSCAT data for
this period. We then compared NSCAT observations to poste-
rior means (and realizations) at the NSCAT locations by map-
ping the posterior output to those locations via the appropriate
Ks4t

05. Figure 7(a) shows the relationship when all NSCAT
data are included in the analysis. Figure 7(b) shows the result
when the NSCAT data for this time period are excluded.
Similarly, Figures 7(c) and 7(d) show the same plots, but
for a realization from the posterior distribution. Given the
amount of data removed (over 5 � 103 observations), the lin-
ear associations shown in these � gures suggest that the model
is reasonable.

6. DISCUSSION

The wind � elds from these analysis are currently being used
in studies of tropical cyclone development and its relation-
ship to intraseasonal and interseasonal phenomena such as the
Madden–Julian oscillation and El Niño, and the seasonal pre-
diction of El Niño. Additional studies of this kind will be pos-
sible when the methodology is extended to cover the entire

tropical region. We are currently “porting” this model to a
supercomputing environment, which will allow such calcula-
tions for larger domains. Because the posterior wind � elds
generated by the current model show realistic small- and
medium-scale variability, the results from these analyses can
then be used to provide distributional forcing to tropical ocean
general circulation models.

APPENDIX: HIGH-DIMENSIONAL MULTIVARIATE
NORMAL SAMPLING

Consider the full conditional distribution for some n � 1 vector x,

x—¢ N 4Qƒ1g1 Qƒ151 (A.1)

where Q ² ë 0K0Kë C D is known and has dimensions n � n and
g is a known n � 1 vector. De� ne n � 1 random vectors e11 e2

iid N 401 I5 and let

f ² ë 0K0e1 CD1=2e20 (A.2)

Consider the linear system

Qx D g C f0 (A.3)

Because Q is invertible by hypothesis and, with probability 1, g 6D ƒf ,
the unique (with probability 1) solution to (A.3) is Qx D Qƒ14g C f5.
It can be easily shown that E4f5 D 0 and var4f5 D Q, and hence
E4Qx5 D Qƒ1g and var4Qx5 D Qƒ1. Thus, with simulated e1 and e2 , the
corresponding solution to (A.3) is a sample from (A.1).

For n very large, we use iterative approaches to solve (A.3), rather
than attempt the indicated matrix inversion directly. Speci� cally, we
use the conjugate gradient algorithm (e.g., Golub and Van Loan
1996, sec. 10.2). Especially in the case of sparse systems as arising
in our model, this approach has computational advantages related to
storage and ef� ciency. The basis of the algorithm is that the solution
to (A.3) coincides with the minimizer of the expression

min
x

1
2

x0Qx C x04g C f5 0 (A.4)

Improvements over direct iteration, such as Newton’s method or
steepest descent, come to mind. The conjugate gradient method is
similar, but has the property that all successive differences, xiC1 ƒxi ,
between iterates are mutually Q-orthogonal (or “conjugate”); that is,
4xiC1 ƒxi50Q4xjC1 ƒxj5 D 0.

As with most iterative procedures, a key computational issue is
the rapid computation of powers of Q. Indeed, we can write (A.3) as

4ë 0K0Kë C D5x D g C ë 0K0e1 CD1=2e21 (A.5)

where D1=2 is sparse for our models. Thus we do not have to store Q,
and must only perform a series of vector multiplications. By making
use of sparseness from our hierarchical implementation and spectral
and multiresolution representations, we can do these multiplications
very ef� ciently (e.g., in our case ë x corresponds to the inverse dis-
crete wavelet transform).

With an iterative approach, a choice must be made as to starting
values. We typically use the value for the previous Gibbs iteration or
the one-step-ahead “prediction” from the appropriate Markov model.
Furthermore, although the conjugate gradient algorithm is known to
converge to the solution in at most n steps, n is far too large for the
algorithm to be run convergence for each MCMC iteration. Hence
one must choose an approximate-convergencecriterion. In our imple-
mentation, this criterion is speci� ed to be ˜˜gC f˜, where ˜ D 00005;
this criterion is usually met after 15–30 iterations.
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Figure 6. (a), (b) Wind and Divergence Field Realizations From the Posterior Distribution at 0000 UTC on November 7, 1996; (c) Posterior
Standard Deviation for Divergence (s 1) at the Same Time.
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Figure 7. NSCAT u-wind Component at 0000 UTC November 7, 1996 Versus the Posterior u-Wind Downscaled to NSCAT Locations; (a) Data
Versus Posterior Mean With NSCAT Data Included for This Period; (b) Data Versus Posterior Mean with NSCAT Data Deleted for This Period; (c)
Same as (a), Except That a Realization From the Posterior Is Used; (d) same as (b), Except That a Realization From the Posterior Is Used. All data
are in m/s.
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