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Abstract

Geophysical and other natural processes often exhibit nonstationary covari-
ances and this feature is important for statistical models that attempt to
emulate the physical process. A convolution-based model is used to represent
nonstationary Gaussian processes that allows for variation in the correlation
range and the variance of the process across space. We apply this model in
two steps: windowed estimates of the covariance function under the assump-
tion of local stationarity and encoded local estimates into a single spatial
process model that allows for efficient simulation. We show that nonsta-
tionary covariance functions based on the Matérn family can be reproduced
by the LatticeKrig (LK) model, a flexible, multi-resolution representation of
Gaussian processes. Stationary models based on the Matérn covariance are
fit in local windows and these estimates are assembled into a single, global
LK model. The LK model is efficient for simulating nonstationary fields even
at 105 locations. This work is motivated by the interest in emulating spa-
tial fields derived from numerical model simulations such as Earth system
models. We successfully apply these ideas to emulate fields that describe the
uncertainty in the pattern scaling of mean summer (JJA) surface temperature
from a series of climate model experiments. The spatial covariance structure
developed in this paper is not limited to emulation, and could also be used
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for spatial prediction and conditional simulation for observational data and
leverages embarrassingly parallel strategies for computational efficiency.

Keywords: Nonstationary Gaussian Process, Markov Random Field, Fixed
Rank Kriging, NCAR Large Ensemble Experiment

1. Introduction1

In many areas of the geosciences it is natural to expect spatial fields to be2

nonstationary. Not accounting for how the covariance function may vary over3

space can result in misinterpreting the amount of spatial correlation and also4

lead to unrealistic emulation of the spatial fields. As spatial datasets grow5

in size and often have global extent, it is more likely that one would expect6

nonstationary fields simply because the spatial domain covers a heterogenous7

region. This is often the case for surface climate fields where distinct land8

and ocean regions might be expected to exhibit different spatial structure.9

Although large spatial data sets have the advantage of making it easier to10

identify nonstationary covariances, they pose computational challenges when11

one attempts to apply standard statistical models that involve solving a lin-12

ear system and finding the determinant of an n×n covariance matrix, where13

n is the number of spatial locations. This feature is due to the well-known14

increase in computational burden that grows as O(n3). Currently this fea-15

ture effectively prohibits fitting and simulating from Gaussian spatial process16

models when the number of locations exceeds several thousand. Moreover,17

even for sample sizes where computation is still feasible, interactive spatial18

data analysis will always benefit from faster computation.19

Given the spatial variation of a nonstationary covariance function it is20

natural to focus on local modeling of the spatial field. Besides reducing bias21

in the estimated covariance parameters, this strategy also finesses some com-22

putational problems by converting a single large problem into many smaller23

ones. A local approach does have the disadvantage that it may not lead to24

a global model for the covariance function or may imply a covariance model25

that is not readily computed. This work combines efficient local covariance26

estimates with a global model, LatticeKrig (LK, [1]), that can incorporate27

the local information. The LK model is designed for statistical computations28

for large data sets, and in particular it is possible to simulate realizations29

from this model and make spatial predictions with only modest computa-30

tional resources. Although local covariance estimates in aggregate require31
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the same order of computation, the memory demands are smaller and the32

computations can be easily done in parallel. As a practical matter we ex-33

ploit a large computing resource (the NCAR supercomputer Cheyenne [2])34

for these computations and find that the computation time scales almost35

linearly up 1000 processors (cores).36

This work is motivated by a substantial example from impact assessment37

modeling and Earth system science. We have 30 derived fields from the38

NCAR Large Ensemble Project (NCAR-LENS) [3] that indicate the variation39

in local surface temperature increase due to an increase in the global average.40

For each model grid box we find the slopes from a simple linear regression of41

the local grid box temperatures on the global mean temperature. This can42

be done for each of the 30 members of NCAR-LENS and a simple summary is43

to then find the mean of these slopes for each grid box. The global pattern of44

the mean of the slopes is illustrated in Figure B.1 and has the interpretation45

that a one degree change in global mean summer temperature will result on46

average in a change in local temperature according to the gridded values of47

this field. Such fields form the basis of the pattern scaling technique in climate48

science. One surprise from these different realizations in the NCAR-LENS is49

that there is significant variability about the mean scaling pattern in Figure50

B.1 (e.g. see bottom row Figure B.8) among the ensemble members. The51

data science goal then is to quantify this variability. This is a large spatial52

problem; the model grid is at approximately one degree resolution and so53

there are more than 55,000 spatial locations (288 × 192 grid). Since these54

data cover the entire globe, even subregions exhibit nonstationary behavior.55

Due the nature of climate model ensemble simulations, one can assume56

that the 30 fields are independent replicates from the same climate distri-57

bution. The goal is to model these fields accurately and simulate additional58

realizations. A larger set of realizations will be useful for quantifying the59

uncertainty of impact assessment modeling of climate change. Earth system60

models are large computer codes that can take months to run at dedicated61

supercomputing centers. Strategies for extending the results using fast sta-62

tistical emulators is an important application to save additional computing63

resources. Moreover, detailed statistical models often reveal features of the64

simulations not obvious from basic data analysis. The specific spatial appli-65

cation in this paper is part of a larger statistical emulation of surface temper-66

ature fields for extending model results to other conditions [4]. This appli-67

cation is typical of climate model ensemble experiments, and the availability68

of replicated fields facilitates estimating nonstationary covariance functions.69
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The next section provides some background to this problem and presents70

the convolution process model as a basis for considering nonstationary co-71

variances. Section 3 outlines the LK statistical model that is useful for large72

spatial data sets. Section 4 gives evidence to show that this model can73

approximate more standard covariance families such as the Matérn. The ap-74

plication to the pattern scaling ensemble is covered in Section 5, followed by a75

discussion of the results. We conclude by highlighting the novel contributions76

presented in this paper.77

2. Background78

We assume that the field of interest can be approximated as a Gaussian79

spatial process, y(s), with s ∈ D ⊂ <2, and for convenience D to be a80

rectangle. Furthermore, assume that this field follows the additive model81

y(s) = z(s)Td + g(s) + ε(s), (1)

where z(s) is a low-dimensional vector of known covariates at each location, d82

a vector of linear parameters, g(s) is a mean zero, smooth Gaussian process,83

and ε(s) a Gaussian white noise process independent of g. The parameters84

d represent fixed effects in this model while g and ε are stochastic.85

There are several features of the observational model that are specific to86

our climate model application. Let {ym} index M replicate fields that are87

independent realizations of the additive model (1). Given N spatial locations88

{s1, . . . , sN} ⊂ D, the observations are Yi,m = ym(si), M independent fields89

observed at N locations. We also assume that the observations are complete90

– every replicate field is observed at all locations, which is typical for climate91

model output. Thus Y can be represented as an N ×M matrix. Besides92

assuming replicate fields, we also assume that there is no measurement error93

in the observations and the white noise process ε is an approximation to a94

fine scale process that is uncorrelated when sampled on the scale of the ob-95

servation locations. Note that in other applications, the white noise process ε96

may be interpreted as observational error. In our case we consider it intrinsic97

to the stochastic model for the climate model output.98

2.1. Gaussian process convolution models99

Under the Gaussian process assumption, the distribution of y is deter-100

mined by the covariance function for g and the variance function for ε. In101
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particular we set102

E[g(s)g(s′)] = k(s, s′) and E[ε(s)2] = τ(s)2.

Our main concern is to model k without assuming stationarity of the process,103

and to this end we use a convolution representation. We postulate that the104

LK model is a discrete approximation of a convolution process (3.3), and for105

this reason we will start with a review of relevant material.106

Let ψ be a continuous and square integrable function in <2 and normalized107

so that108 ∫
<2
ψ (‖u‖)2 du = 1.

Define the spatially varying kernel function for two dimensions as109

H(s,u) =
1

θ(s)
ψ

(
‖s− u‖
θ(s)

)
,

and110

k(s, s′) = σ(s)σ(s′)
∫
<2
H(s,u)H(s′,u) du, (2)

where we assume that θ(s) is at least piecewise continuous and is interpreted111

as a range parameter varying over space. Also note that if σ ≡ 1 then k is a112

correlation function. Based on this form, we see that k will always be a valid113

covariance function, as it can be formally derived from the process114

g(s) =
∫
<2
H(s,u) dW (u)

with dW (u) a two-dimensional standard white noise process.115

The Matérn family is a popular choice for representing a covariance func-116

tion and can also be interpreted with respect to process convolution. Let117

ψ(d) = C(ν)dνKν(d)

with ν > 0 a parameter controlling the smoothness of the process, Kν a118

modified Bessel function of the second kind, and C a constant depending119

on ν. Assume that θ(s) ≡ θ and let H(s,u) = ψ(‖s − u‖/θ). Using the120

spectral representation of the Matérn it has been shown [5] that k(s, s′) will121

also be a member of the Matérn family with scale parameter still θ. If νg122

is the smoothness for g, then H must have smoothness νH = νg/2 − d/4 .123

For example, when d = 2 and νg = 2, g is obtained by convolution using the124
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exponential covariance (νH = 1/2). When the scale/range parameter is not125

constant, however, the derived covariance is not strictly Matérn and will not126

have a form that is readily computed.127

A convolution model to represent nonstationarity of a Gaussian process128

has been addressed by many authors. In particular we highlight early work129

in this area as applied to ocean temperature data [6], [7] and the subsequent130

development [8]. Although not explicit, the more recent models based on131

stochastic partial differential equations can also be tied to this representation132

[9], [10]. IfH is the Green’s function for a partial differential operator, L, then133

g can also be identified with the solution: Lg(s) = dW (s). An alternative to134

the convolution model is an explicit nonstationary covariance first proposed135

by Paciorek [11] and extended to include smoothness parameters [12]. Our136

understanding is that this model is derived as a scale mixture of Gaussian137

covariance convolutions and so will not be the same as the direct convolution138

model sketched above.139

Some more recent work has addressed the computation for large datasets140

[5] and use of a low dimensional function for the covariance parameters [13].141

Recent work by [14] also is amenable to large data sets but focuses on the142

Paciorek form of covariance. A common thread in this past work is an em-143

phasis on spatial prediction rather than simulation of the unconditional, non-144

stationary process. Thus much of this work is not directly transferable to145

our application of statistical emulation.146

2.2. Maximum likelihood estimates147

To explain the algorithms for large data sets, we review the relevant statis-148

tical computations associated with Gaussian process inference. Although this149

work considers maximum likelihood for inference, we note that the extension150

to approximate Bayesian inference may also benefit from the computational151

shortcuts that we highlight. Let152

Ki,j = Cov(g(si), g(sj)) = k(si, sj),

and let R be a diagonal matrix with elements Ri,i = τ(si)
2. This gives the153

covariance matrix for ym as K + R. Also let Z be a matrix with N rows154

where the ith row is the covariate vector z(si). In vector/matrix form the155

likelihood for the complete data set, Y = [y1, . . . ,yM ], is given by156

N

2
log(2π)− M

2
log |K +R| −

M∑
m=1

1

2
(ym − Zd)T (K +R)−1(ym − Zd) (3)
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with the covariance matrices implicitly depending on the parameters (or fields157

of parameters) σ, τ and θ. For large data sets evaluating the likelihood poses158

the well-known computational hurdles of storing K, solving the linear system159

associated with K+R and evaluating the determinant of K+R. In addition,160

for a nonstationary model, evaluating the covariance as a convolution may161

also involve significant computation if the integral does not have a closed162

form.163

These features make it difficult to estimate nonstationary models. Here164

we take a local approach by assuming that the covariance function is approxi-165

mately stationary in a small spatial neighborhood and we take the stationary166

parameter estimates for σ, τ and θ as representing the values of these pa-167

rameter surfaces in the center of the neighborhood. This is not a new idea168

and has roots dating back to the early work on moving window Kriging [15],169

[16], [17] and is also similar to local likelihood ideas [18], [19].170

In this work we add two new features to this method. First, we develop171

a computational framework that exploits a highly parallel approach to esti-172

mate the local parameters. Subsequently the local covariance estimates are173

encoded into a global spatial process model that is efficient for simulation.174

3. A multi-resolution spatial process model175

The process convolution model (2) is a useful nonstationary model but176

difficult to implement for large spatial data. Here we present an alterna-177

tive, the LatticeKrig (LK) model, that is a good approximation to standard178

covariance families but is much more amenable to fast computation.179

The LK model is one of several recent approaches to handle large spatial180

data in a consistent global way. The recent review [20] compares many181

of these methods with an emphasis on spatial prediction for a data set of182

105 locations. The multi-resolution approximation [21], hierarchical nearest183

neighbor methods [22] and stochastic partial differential equation models [10]184

might all be alternatives to using LK for the global simulation.185

The basic idea of LK is to adopt fixed rank Kriging (FRK, see [23], [24])186

but model the precision matrix of the coefficients as a sparse matrix. This187

model draws on the work of FRK and stochastic PDEs but also adds a multi-188

resolution elaboration that greatly improves its flexibility. Moreover, the189

nonstationary LK model can be interpreted as a superposition of convolution-190

type processes at different spatial scales.191
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We assume that the process g(s) is the weighted sum of L independent192

latent processes193

g(s) =
L∑
`=1

σ`(s)g`(s). (4)

Here g`(s) is a Gaussian spatial process with mean zero and marginal variance194

of 1, and σ` is a nonnegative function for the marginal standard deviation of195

the field at level `. Thus, the marginal variance for g(s) is
∑L
`=1 σ`(s)2.196

3.1. Multi-resolution basis197

Each component g` is defined through a basis function expansion as198

g`(s) =
m(`)∑
k=1

ck,` ϕk,`(s), (5)

where ϕk,`, 1 ≤ k ≤ m(`), is a sequence of fixed basis functions and c` is199

a vector of coefficients distributed multivariate normal with mean zero and200

covariance matrix, Q−1` . Coefficients are assumed to be independent between201

the different levels.202

To achieve a multi-resolution, the basis functions are formed from trans-203

lations and scalings of a single radial function. The basis functions depend204

on a sequence of nested rectangular grids {uj,`}, where 1 ≤ j ≤ m(`) and205

1 ≤ ` ≤ L. The grid spacing is kept at the same distance in both dimensions206

and decreases by a factor of 2 from ` to `+1. Let φ be a unimodal, symmetric207

function in one dimension, and for this work we assume that it is compactly208

supported on the interval [−1, 1]. We adopt a scale parameter δ to set the209

overlap of the basis functions and the basis functions are then defined as210

ϕ∗j,` = φ(2`−1‖s− uj,`‖/δ). (6)

Here the ∗ indicates that these are not exactly the final versions of the basis211

functions but will be normalized as described in the Appendix. Although212

an important detail for implementation, the normalization is not crucial for213

understanding the main features of this model.214

3.2. Spatial Autoregressive Model215

In the LK model, the spatial covariance for c` at a given level ` is modeled216

as a nonstationary Markov random field. The coefficient vector c` at a single217

level follows a spatial autoregression (SAR) and is organized by the node218
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points. Each coefficient ck,` is associated with a node point uk,` and will have219

up to four first-order neighbors. Denote this set Nk. We assume that for a220

parameter field, a(s), and vk,`, iid N(0, 1) random variables, the coefficient221

fields satisfy222

a(uk,`) ck,` −
∑

k∗∈Nk

ck∗,` = vk,`, (7)

where a(s) > 4 for the process to be stable. Note that in this work we223

enforce the restriction that the a parameter field does not vary between224

levels and we discuss this point in the last section. The parameters a(s)225

control the dependence of the GMRF within a level and for constant a are226

related to the range parameter. Specifically this GMRF has been studied in227

[10] and approximates a Matérn covariance with smoothness ν = 1.0 and an228

approximate range parameter given by 1/
√
a− 4.229

Let B` be the SAR matrix that is square with the same dimension as230

c`. The diagonal elements of B` are a(uk,`), the off-diagonal elements are231

−1 at the positions of the nearest neighbors, and the remaining entries are232

zero. With this construction B`c` = v`, and simple linearity implies that the233

precision matrix for c` is Q` = BT
` B`. Given this model for each level the234

basis functions are normalized so that the marginal variance of g`(s) is one235

(see Appendix) and the levels are assumed to be stochastically independent.236

The net result is an overall precision matrix for the coefficients that is block237

diagonal according to Q`. Note that because Q is formed from the SAR both238

the precision matrix and covariance matrix for c will be positive definite.239

3.3. An approximate convolution process240

We can also conjecture how this model behaves as a discretized convolu-241

tion process. Let Φ` be the matrix with (i, j) elements ϕj,`(si). For a given242

level 1 ≤ ` ≤ L, a realization of g` at the observations has the representation243

g` = Φ`B
−1
` v` (8)

where the matrix multiplications in this expression are sums over the lattice244

points. Given that the lattice is equally spaced and the support of the basis245

functions is calibrated to overlap several lattice points, this expression may246

approximate integrals over the spatial domain. From the discussion in [5]247

(see Table 1) B−1` can be associated with a Matérn kernel with smoothness248

0 and is denoted as K0, the modified Bessel function of the second kind of249
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order 0 as in [5]. We conjecture that Φ`B
−1
` is approximated by250 ∫

<2
φ(2`‖x−w‖/δ)K0(‖w − u‖/κ(s)) dw.

with κ(s) = 1/
√
a(s)− 4. Although K0 has a singularity at 0, the convolu-251

tion with the Wendland basis functions is smooth at zero and will result in252

a bounded kernel H.253

Computational efficiency and simulation254

To simulate from the LK model it is enough to simulate a realization of255

the coefficients since the basis is fixed. Also note that the coefficients between256

levels are independent. Focusing on the `th level, B` is a sparse matrix with257

at most 5 nonzero entries per row. Thus Q` = BTB will also be sparse258

with at most 13 nonzero entries. Accordingly let Q` = AAT be the sparse259

Cholesky decomposition with A a sparse, lower triangular matrix and let v260

be a vector of iid N(0, 1) random variables. Then c∗` is simulated by solving261

the sparse linear system262

ATc∗` = v. (9)

g` is now evaluated using (5) and the components are added. Note that263

evaluating g` in (5) will also be efficient due to the compact support of264

the basis functions. In addition, computational burden is not increased by265

introducing nonstationarity through varying the a and σ` parameter fields.266

4. Approximating the Matérn family as a multi-resolution267

We first provide some results to demonstrate how the LK model approx-268

imates a stationary Matérn model and then generalize this connection with269

two examples for a nonstationary convolution process.270

4.1. Stationary approximation271

The theory in [25] proves an asymptotic result that indicates that the LK272

model can approximate the smoothness of members of the Matérn family as273

the number of levels becomes infinite. The main finding is that σ` should be274

chosen to decay as 2−`ν to approximate a Matérn process with smoothness ν.275

To build the best approximation over a limited number of resolution levels,276

however, it is more accurate to optimize the LK parameters numerically.277
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For an approximation criterion we focus on the accuracy of simulating a278

random field. For an integer K we generate a grid of (2K + 1)2 locations at279

unit spacing for the spatial domain [−K,K] × [−K,K]. Given smoothness280

and range parameters, the Matérn correlation matrix is evaluated at these281

locations. Denote this matrix by Γ(θ, ν) and let ωM(θ, ν) denote the center282

row of the symmetric square root matrix for Γ(θ, ν). In an analogous way283

for LK parameters a and {σ`} with ` ∈ {1, 2, . . . , L}, let ωLK(a, {σ`}) denote284

the center row for the symmetric square root of the LK correlation matrix.285

We determine the best representation for the Matérn as the values for a and286

{σ`} that minimize287

(‖ωM(θ, ν)− ωLK(a, {σ`})‖2)2 (10)

with ‖ · ‖2 being the usual Euclidean vector norm, the set {σ`} nonnegative288

and summing to 1, and a > 4. The motivation for this criterion is based289

on simulating the Matérn process at the grid locations using Γ(θ, ν)1/2v,290

where v is a vector of independent N(0, 1) random variables. The weights,291

ωM(θ, ν), are applied to this random vector to obtain the simulated field value292

at the center of the domain. Thus [(ωM(θ, ν)− ωLK(a, {σ`})]T v will be the293

difference between this center value simulated under the Matérn model and294

that simulated under the LK model. The sum of squares in (10) will be the295

variance of this difference. We believe that this criterion is appropriate for296

approximating the simulated random field and we focus on the central grid297

location to minimize any boundary effects. Also we focus on the simulation298

error because this project is concerned with accurate emulation of the model299

output.300

This approximation strategy is applied for K = 10 (a 21 × 21 grid) and301

the parameters are optimized using the R optim function. We consider 3302

levels of multi-resolution with the coarsest having 2.0 unit spacing for the303

nodes. Figure B.2 summarizes this approximation for different sets of Matérn304

parameters. For example, for θ in the interval [1, 12] and for a smoothness of305

ν = 1.0 the LK model can approximate the Matérn to within a few percent of306

relative root mean squared error. We obtain approximations with less than 6307

percent relative root mean squared error for the case ν = 2.0 over the interval308

[1, 8]. Moreover, we expect the approximation to improve if additional levels309

are added.310

These results can simply be scaled to other domain sizes by adjusting the311

spacing of the basis function grid at the coarsest level of the LK model. In312
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this way our results form the basis of a general approximation table to map313

Matérn covariance models into ones in the LK framework. The significance of314

these results is that given a locally stationary Matérn process one can identify315

parameters a and {σ`} for the LK model that give an accurate approximation.316

This approximation is tested under nonstationary specifications in the next317

section.318

4.2. Approximating nonstationary fields319

We use two informative test cases to explore the properties of the LK320

approximation to nonstationary, convolution-type processes. The spatial do-321

main is taken to be [−24, 24] × [−24, 24]. For the first case, we divide the322

spatial domain vertically into regions with two different correlation ranges:323

θ(s) =

{
5 for s1 ≤ 0

1.9 for s1 ≥ 0

while fixing σ(s) ≡ 1 and τ(s) ≡ 0. Here s = (s1, s2) and this can be324

considered an idealized test case of an land/ocean boundary from the climate325

model example.326

The nonstationary field was defined by this range parameter and con-327

volving exponential kernels according to (2). Based on the properties of the328

Matérn we expect a stationary Matérn covariance function with smoothness329

2 when θ is constant.330

Figure B.3 illustrates the exact correlation functions of the field at two331

locations along the the transect where the y-coordinate is 0 (s2 = 0). Each332

evaluation of the correlation function now requires a numerical integration333

and so the comparison was restricted to a horizontal transect was done in334

order to limit the amount of computation. For reference, superimposed are335

the Matérn covariance functions assuming local stationarity. Note that these336

tend to track the nonstationary curves except at the boundary where θ is dis-337

continuous. Also note the surprising lack of monotonicity in the correlation338

function at the location (7, 0). Figure B.4 reproduces these true nonstation-339

ary correlation functions and superimposes the correlation functions from the340

LK approximation. Here the LK model is encoded to be a locally stationary341

Matérn approximation with a spatially varying a parameter. The precise342

value of a is found by interpolating θ(s) to the node points and then con-343

verting θ to a using the stationary approximation described in the previous344

section. Overall the LK model appears to capture the general features of345
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the nonstationarity and the transition from θ = 5 to 1.9 on the line s1 = 0.346

The LK model makes a smoother transition, however, across this boundary347

tending to overestimate correlations for locations closer to the discontinuity.348

The LK nonstationary model also misses the departure from monotonicity in349

the correlation function. The second nonstationary test case is setup similar350

to the first except that θ(s) is set to vary as a linear ramp function in s1351

decreasing from 6 at the left boundary to 1 at the right. Figure B.4 compares352

the true correlation functions to those approximated by the LK model. In353

this case the agreement is good and we attribute this to the smoothly varying354

choice for the θ(s) field.355

Figure B.6 is a realization of the LK approximation for the first test case356

and gives a qualitative impression of the variation in the correlation scale357

across the discontinuity in θ(s) (grey vertical line). The three previous plots358

only depict the correlation along the transect s2 = 0, indicated by the black359

line in this figure. To simulate the true field in this first case would not be dif-360

ficult because θ(s) is piecewise constant. In general the simulation would be361

computationally intensive, however, requiring a separate convolution kernel362

computation for each location in the field. Even if the nonstationary matrix363

could be assembled there is still the challenge of computing the Cholesky364

factor for a large and dense covariance matrix. In contrast, the LK realiza-365

tion is found for a 129× 129 grid and took under 20 seconds on a MacBook366

Air laptop (Intel Core i7, 2.2 GHz, 8 GB memory) using serial code and the367

LatticeKrig package in R.368

5. Simulating variation in pattern scaling fields369

As outlined in the introduction our application is to model the spatial370

variation among the patterns derived from the NCAR-LENS project. We371

will focus on a North and South America sub-domain to streamline presen-372

tation comprising 13, 056 = 102 × 128 grid boxes. We found that a Matérn373

with ν = 1.0 was a reasonable choice for smoothness across the domain and374

an isotropic Matérn covariance was fit locally using several sizes of moving375

square windows. Here we report estimates based on 11×11 grid box windows376

with the maximum likelihood estimates registered to the center grid box. Al-377

though this domain is a section of the sphere we develop the spatial model378

as if the model grid points are on a rectangular grid. This is a reasonable379

approximation because the domain is small enough where the periodicity380

in longitude and the singularity at the poles are not issues. Also because381
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we allow the correlation range to vary over the domain it will provide some382

adjustment to the longitude distance being a function of latitude.383

5.1. Local covariance estimates384

Even with 30 replicate fields, estimating the θ and σ parameters was385

not robust and we often obtained very large values over the ocean. This386

sensitivity is expected for large correlation ranges but we note that τ is still387

adequately estimated and is small over the ocean reflecting a smooth spatial388

field. Let σobs be the sample standard deviation for the replicates and for each389

grid box. A simple adjustment to the variance parameters is for τ̂ < .003390

and σ̂ > σobs we take take σ̂ ≡ σobs. For θ̂ > 15 we set θ ≡ 15. Admittedly,391

these are crude adjustments but they respect the basic assumptions of more392

spatial coherence over the ocean and also the fact that correlation ranges393

beyond 15 degrees (> 1600 km at the equator) are not likely and will not394

influence the simulation of the fields.395

Previous work (e.g. [5], [14]) has treated the local covariance estimates as396

being under-smoothed and applied a second smoothing step to the estimated397

parameter field to improve its accuracy. We investigated this issue for these398

data by fitting an approximate thin plate spline (the function fastTps from399

the fields package [26]) to the log of the estimated θ field. The smoothing400

parameter was found by maximum likelihood and given 13,056 observations401

the effective degrees of freedom for the spline was over 3,500. This result402

does not suggest the need for additional smoothing of the local θ estimates.403

We also fit a thin plate spline model with the land/ocean mask added as a404

linear covariate and this did not change the results. Given this data analysis405

we concluded that there was little benefit in adding a second modeling step406

in representing the range parameter field.407

5.2. Simulation of the pattern scaling uncertainty408

Figure B.7 reports the Matérn estimates based on the above discussion.409

Perhaps the most important aspect of these data is the striking nonstationar-410

ity in all three parameter fields and the clear land/ocean demarcations along411

much of the coast line. We believe that this clear signal between land/ocean412

in the parameters suggests that our choice of window size is appropriate and413

overall the parameter fields are reasonable. The higher variability (σ) in the414

spatial process (g) in the center of North America and over the land area415

near Argentina is reasonable, along with a larger white noise component (τ)416
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over land. Although not shown, the ratio of white noise to smooth process417

variance (τ 2/σ2) is small but tends to be larger over land.418

The implementation of the LK model is available in the R LatticeKrig419

package [25]. These parameters were encoded into a LK model with three420

levels of resolution where the coarse grid spacing is 2.5 degrees. The fields421

were simulated on the grid of the model and took under 60 seconds on a422

MacBook Air system. Almost all of that time was in setting up the matrices423

Φ` and the computing the Cholesky decompositions of {Q`} and there is little424

overhead for generating more than one realization.425

Figure B.8 shows four realizations of the LK process on the top row, and426

for reference the first four ensemble members from the spatial data set are427

given on the bottom row. Qualitatively, simulated and true cases have similar428

spatial coherence and variability. We note that the emulation, however,429

does have some modest deficiencies. For example, the anisotropy over the430

Equatorial Pacific is not well represented. In the model there appears to431

be longer correlation scales in the East-West direction as compared to the432

North-South. Of course, this is not a failing of the LK approximation but433

rather the use of an isotropic covariance function. As a contrast to the434

nonstationary model we also generated stationary realizations. The top row435

of Figure B.9 gives four realizations of a stationary field using the median of436

the parameter estimates over land. The bottom row is the same except the437

medians over the ocean are used. To aid in this comparison, we use the same438

white noise vectors for generating the land and ocean field in each column.439

The differences between these two choices of stationary models are striking440

and it is clear that neither would provide an accurate emulation of the model441

output.442

5.3. Parallel implementation443

This example was computed using a parallel strategy and the R language444

[27]. Fitting the spatial model for each window is an embarrassingly paral-445

lel operation and moreover the ensemble data set fields are relatively small446

(about 12Mb). We took the approach of using a supervisor R session and447

then spawning many R worker sessions. The supervisor session assigns tasks448

(i.e. specific local windows) to each worker based on balancing the work449

load. When a worker is done with a specific task the information from the450

fitting is passed back the supervisor. The complete set of results are assem-451

bled as an output list in the supervisor session and in our case this output452

list has as many components as grid boxes in the spatial domain and each453
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contains the results of the local fitting. Creating the workers, broadcasting454

the spatial data set, and assigning the tasks is all done in R through the455

Rmpi package [28]. In using R we have leveraged the stable and rich set of456

spatial analysis tools that are available to the community. In particular, the457

maximum likelihood estimates are found using the spatialProcess func-458

tion from the fields package for the Matérn model and the LatticeKrig459

function from the LatticeKrig package, and these functions are called in460

exactly the same way as on a laptop. We have used this approach on the461

NCAR supercomputer Cheyenne [2] and found it exhibits excellent (strong)462

scaling. An example of timing is given below in Figure B.10. In this test463

case, a one level LK model limited to a 1000 grid boxes is fit directly to464

the data rather than the Matérn covariance. Here we see linear scaling in465

the time with up to 1000 parallel R worker sessions. As expected the time466

to spawn workers shows a linear increase (orange points) but is an order of467

magnitude smaller than the time spent in computation (blue points). Note468

that this scaling has attractive practical implications. Using 1000 cores will469

result in nearly a factor of 1000 speedup in the analysis and can potentially470

convert a lengthy serial analysis into one that is almost interactive.471

6. Discussion472

Combining local covariance estimation with a global model provides a473

practical route for modeling and simulating large spatial data sets. We have474

shown that the LK model can reproduce abrupt nonstationarity in a pro-475

cess where the range parameter has a discontinuity, and as expected, also476

does well when the range parameter varies smoothly across a spatial do-477

main. Moreover, in places where the process is locally stationary we see478

that there is close agreement between the Matérn correlation function and479

the approximate one from the LK representation. The advantage of the LK480

representation is the ability to generate an unconditional realization of the481

process at large number of locations. One can also use the LK model for spa-482

tial prediction and inference [20] although that role is not needed for climate483

model emulation.484

Most data analysis represents a compromise between model complexity485

and realism and the need to estimate the model accurately from data. In our486

application of this model, we used data with spatial replicates, which makes487

parameter estimation much more stable. We do not believe this data set to488

be an isolated example, as ensemble climate experiments are now the norm489
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in climate science. The local covariance models could be improved by adding490

anisotropy and also covariates for the land/ocean regions. Allowing the corre-491

lation range to vary independently in the vertical and horizontal dimensions492

should accommodate the changing distances in the spherical geometry. The493

addition of anisotropic parameters, however, will not involve substantially494

more computational resources and only requires the modification of the SAR495

weights to be different in the horizontal and vertical coordinates. Because496

the LK likelihood can be evaluated for the complete data set, there is the497

opportunity to fit parameters that have a global extent, such as land/ocean498

effects, along with local covariance parameters. The estimation strategy in499

this case would have the flavor of back-fitting in additive models where one500

would cycle among fitting different components of the model and, when ap-501

propriate, exploit embarrassing parallel computation.502

The use of embarrassingly parallel steps, such as local covariance fitting503

or local simulation, is a computational strategy that merits more attention.504

Here we have developed code mainly in R to manage this process and so this505

framework is accessible to any accomplished R user. Indeed, the framework506

we use on the supercomputing system is the same that we use on a laptop507

except for several lines of batch scripting and changing directory pathnames.508

We also believe that this style of computation may drive alternative models509

and algorithms as the number of processors/cores available for routine spatial510

data analysis grows.511

Conclusion512

In this work, we have developed a new method to model second-order513

nonstationarity in spatial data. First, local spatial Matérn parameters are514

estimated through local fitting by maximum likelihood. The local Matérn515

MLE’s are then encoded into a global LK model and we have given numerical516

evidence that this translation is an accurate representation of a convolution517

type nonstationary process. This approach yields advantages in both model-518

ing and computation. The interpretation of LK as a discrete approximation519

to a convolution process (3.3) allows for efficient simulation of realizations at520

a large number of locations.521

To our knowledge, this two step approach of local fitting followed by global522

simulation is new, and our application is a large data set relative to other523

examples in the literature. Figures B.7, B.8 and B.9 collectively give a clear524

and convincing message that the nonstationarity in the data is being captured525
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by the LK model. Stationary models fail to identify the covariance structure526

of the data, and produce unrealistic emulations as shown in Figure B.9. In527

contrast, the nonstationary model incorporates interpretable parameters in528

a global model that produces realistic emulations of the climate model fields,529

as shown in the top row of Figure B.8.530

In closing we emphasize that modeling nonstationary data in this manner531

is not limited to climate model applications. The LatticeKrig package is a532

freely available through CRAN, easy to use, and one of the few nonstationary533

models for large spatial problems.534
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Appendix A. Wendland radial basis kernel543

The Wendland functions are compactly supported on [0, 1] and are also544

positive definite. Below is the version of the Wendland valid up to 3 dimen-545

sions and belonging to C4:546

φ(d) =

{
(1− d)6(35d2 + 18d+ 3)/3 for 0 ≤ d ≤ 1

0 otherwise.

This is implemented as the function WendlandFunction in the LatticeKrig547

R package.548

Appendix B. Normalization to approximate stationarity549

Because of the discrete nature of the SAR the marginal variance of the550

LatticeKrig process will not be constant in the spatial domain. This can cause551

artifacts in the estimated surface and compromise its ability to approximate552

stationary covariance functions. To adjust the marginal variances we com-553

pute the unnormalized variance, across space, and divide by this quantity to554

give a constant variance at any location.555
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Based on the model and notation from Section 3, let C = Q−1` and at556

multi-resolution level `,557

Var(g`(s)) =
∑
j,k

ϕj,`(s)Cj,kϕk,`(s)

Accordingly, let ω(s) =
√

Var(g`(s)) and normalize the basis functions as558

ϕj,`(s) =
ϕ∗j,`(s)

ω(s)

These are the actual basis functions used in the LK model and for spatial559

analysis.560
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Figures645

Figure B.1: Pattern scaling field for mean surface temperature (Centigrade) for the months
of June, July and August (JJA). The field is an estimate of the local response to global
warming. For example a value of 2.5 estimated at a particular grid box implies that that
1 degree change in global average JJA temperature will result in a change of 2.5 degrees
at that location. This field is the sample mean of the 30 individual patterns found for the
30 ensemble members generated from the NCAR LENS. The simulation period 1920-2080
and uses the greenhouse gas scenario RCP8.5.
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Figure B.2: Root mean squared error (RMSE) approximation error between weights for
the Matérn covariances and the LatticeKrig model. The plotted points (green ν = 2.0 and
orange ν = 1.0) are the RMSE values from minimizing the criterion in (10) over the LK
parameters. The range parameter is scaled so that the correlation is .5 at a distance of
the range. The break in the points is due to switching the leading resolution level for the
LK model.
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Figure B.3: Correlation curves for the data generating process illustrating the nonsta-
tionary first test case. Superimposed are the local stationary correlation functions. The
spatial domain for this example is the square [−24, 24] × [−24, 24] but the correlation
function is evaluated along the transect with the y-coordinate equal to zero. Plotted are
the correlation functions for the location (−17, 0) in black and (7, 0) in red with points.
The grey lines are the stationary correlation functions using the range parameter at these
locations.
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Figure B.4: Comparison of LatticeKrig approximation (grey lines) and true nonstation-
ary correlations (points) for the first nonstationary test case, with a discontinuous range
parameter. The superimposed black line gives the values for θ(s) as a function of the x-
coordinate and corresponds to the axis on the right hand side of the plot. The correlation
functions are with respect to the locations and colors: (−17, 0) orange, (−5, 0) green, (3, 0)
blue, and (15, 0) red.
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Figure B.5: Comparison of LatticeKrig approximation (grey lines) and true nonstationary
correlations (points) for the second nonstationary test case, with a linearly varying range
parameter. As in figure B.4 the black line indicates the value of the range parameter. The
correlation functions are with respect to the locations and colors: (−17, 0) orange, (−5, 0)
green, (3, 0) blue, and (15, 0) red.
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Figure B.6: Simulated field from the LatticeKrig approximation from the first nonstation-
ary case. The vertical line is where the range parameter changes from 5 to 1.9. One can
discern smaller scale structure in this field on the right side and larger scale features on the
left side. For reference, the horizontal line is the transect used to evaluate the correlation
functions in the previous figures.
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Figure B.7: Matérn parameter fields based on a 11× 11 grid box moving window. At the
equator this window width is 13.75 degrees or 1526 km. Parameters are found by maximum
likelihood in these local windows, however, the σ and θ fields have been truncated for large
values over the ocean.
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Figure B.8: Simulated and true fields for the pattern scaling data set. The top row shows
four realizations from the LK Gaussian process model, and the bottom plots are the first
four data fields based on the climate model output.
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Figure B.9: Simulated stationary fields following the pattern scaling data set. The
top row shows four realizations from the LK Gaussian process model using the median
covariance parameters over land. The bottom row shows the corresponding realizations
using median parameters over ocean.

29



●

● ●

● ●

●

50 100 200 500 1000

5
50

50
0

50
00

Cores

T
im

e 
(s

ec
)

● ●

●
● ● ●

●

●

●

●

●
●

Figure B.10: Timing results for fitting local stationary covariances to 1000 grid boxes as
a function of the cores. In this case the number of cores is equal to the number of worker
R sessions. The parallel sessions were managed by the Rmpi package and done on the
Cheyenne supercomputer managed by NCAR. Blue is the time fitting the model, green is
the time broadcasting data to workers, and orange is the time spawning workers.
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