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Outline

Projections of future solar radiation for PV power
Regional climate model uncertainty
Challenges for functional data analysis

Open water leads in sea ice simulations.

Unsupervised learning.

Solar radiation project: Maggie Bailey, Soutir Bandyopadhyay
Manajit Sengupta, Aron Habte, Yu Xie (National Renewable Energy
Laboratory)

Sea ice: Hannah Director ( Mines, Climate ), Cecilia Bitz (U Washington),
Marika Holland ( NCAR).
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Planning for future photovoltaic (PV) power facilities.

Part of NRELs contribution to the energy community is National Solar
Radiation Data Base (NSRDB).

® For the US 4kmx4km resolution, 1998-2014, hourly and 30 minute
times.

® Uses a physical model for solar radiation at the surface and based on a
variety of observations to create the gridded product.

® We might expect solar radiation to change over the lifetime of a facility
along with the other changes to the climate system.
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Building off of NSRDB
A PV facility can have a 30+ year life span

Goal: Characterize the distribution solar radiation at the same space and
time resolution as NSRDB under scenarios of climate change.

® Represent the distribution of solar radiation by a statistical ensemble of
possible outcomes — all equally likely.

® Ensembles might be generated on demand to reduce the size of the
stored results.
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MNIST — hand written digits

Mean across 60K samples

First 20 members
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® Ensembles are useful to represent variation in complex objects.
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Workflow for modeling solar radiation

® Primary variable is Global Horizontal Irradiance (GHI) in watts/m?.

® Use regional climate model projections to infer details of the
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distribution of GHI in time and space. AEEABAAGENA
Based on RCM projections
® Regrid Daily GHI from RCM on native grid — 20km NSRDB Grid
® Predict daily total GHI Regression model with RCMs, seasonality,
elevation — to predict observed GHI based on NSRDB.

Based on NSRDB modeling

® Disaggregation to hourly radiation Daily totals of NSRBD — predict
hourly solar radiation.

® Downscaling to 4km Hourly GHI at 20km — Hourly GHI at 4km

A hierarchical model to simulate high resolution hourly solar from RCM
output.

The variation in hourly GHI is as important as the point predictions.
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Regridding and prediction

The RCM output is not on the same grid as the NSRDB product.
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Regridding and prediction

Regridding uncertainty (to out knowledge) is an often ignored issue in
climate science.

Framework:

® A Bayesian linear model where the "X's" are uncertain.

RCMs values have error based on regridding.

NSRDB = RCM;3; + RCM;3; + RCM3033 + Seasonality + error

® Generate posterior draws from the RCM fields regridded to the NSRDB
grid.

® Bayes posterior for regression coefficients and prediction and GHI
conditional on draw.
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Regridding and prediction results

Parameters in the linear model for a coastal grid box.
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® NOTE RCMs are forced by reanalysis fields.
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® Nominally we have a separate linear model for every grid box.
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Daily total — hourly at 20km

Use the NSRDB data to build this conditional distribution.

Hourly times series for June 1-6 2008, 4 grid boxes.
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Functional boxplots — diurnal cycle 20km

Hourly times series for June months over 1998- 2019
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® Strong diurnal cycle around “deepest” curves
® Substantial variability for “shallow” curves — suggests a mixture model.
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Principle components at 20km
® First three PCs for a single grid box and PC1 + PC2, PC1 4+ PC3.
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® Additional components tend to add more noise than structure.
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Downscaling to 4km

5 x b = 25, 4km time series nested in a single 20km grid box.

June 1-6 2008 , 4km, 20km

T T T
300 301 302

300 600

GHI

0

T
306

A
,\‘:"":
b
T T T
303 304 305

Days

Fall 2022 September 21, 2022 13/1



Summary

These are tentative based on preliminary analysis!
® Some skill in predicting total GHI from the RCMs
® Regridding process does not appear to inflate uncertainty.
® Diurnal patterns appear to be a mixture of a strong daily cycle and
more variable, intermittent behavior. (No surprises here.)

— Also true for 20km to downscaling to 4km.
® Diurnal and coefficients pattern appear to be coherent over space.
Suggesting a multivariate spatial model on PCs.
® [ atticeKrig spatial model and related SPDE work could be useful for
the multivariate spatial and temporal models for the PC coefficients.
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|dentification and Uncertainty of Sea lce Leads

@ Rapid decline in Arctic, more complex changes in Antarctica

@ Understood via physics-based models, remote sensing, and direct
measurement
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Deformation features

@ Leads: long narrow cracks
in sea ice

@ Pressure ridges: small
“mountains” that form on
top of the ice

@ Linear Kinematic Features
(LKFs): discontinuities in
kinematic features of sea
ice (deformation),
encompasses both leads
and ridges
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Resolution

@ Leads emerge in
high-resolution simulations

@ Leads are rarely present in
typical low-resolution
simulations

@ Want to understand
high-resolution leads to
improve low-resolution
approximations

@ Statistics of leads Daily growth rate (Antarctica, April/-
interesting on their own as May/June)
a coherent structure
emerging from the model
dynamics.
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Data

@ High-resolution Community Earth System Model
» Physical simulation of the whole Earth system
» Widely-used and extensively tested
» Focus on Sea Ice component.

@ Pre-industrial control run

» Stable climate
» Useful for understanding sea ice physics and interactions of sea ice with
surrounding environment

Although leads are produced by the model they are not identified explictly
as a coherent structure.

Fall 2022 September 21, 2022 18/1



Data transformation: subgrid-scale leads

Hioh-Resoiuion

Sea ice concentration: propor- j, k N

tion of area in each grid box that -{ e i b

is ice-covered p ' a xﬁ-wﬁ
Model y, the difference between = — 5
high-resolution and smoothed } =

output

Difference is the potential adjustment/parametrization for a low resolution
simulation.
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Finding Leads

Model the lead's path as a chain of A
M + 1 connected spatial points: £ = ot
(P1,- -5 PM+1)- o2

Model the expected difference in sea .

ice concentration at location s as a N
function of the distance from s to the -
lead path

® The hardest part is estimating the end points because of the ambiguity
of when a lead ends.
® Taken together provide a model for the ice concentration field localized

around a lead.
® Difference function estimated using a nonparametric curve estimate.
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Examples of identification

Finding multiple leads
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Analysis of the ice model output
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® Certain vs Possible based on amplitude of difference function.
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Summary

® Speedup Bayesian version to improve uncertainty quantification.

® Find difference function in fully objective manner.

® One of the first times, leads have been explicitly quantified from the ice
component of CESM.
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Thank you
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