Deep learning statistical models

D. Nychka, F. Gerber, M. Bailey and S. Sain*

Colorado School of Mines and *Jupiter

September 10, 2021
The Gaussian CDF
Climate model output
Training Deep Nets on Gaussian Processes
Comparison to Maximum likelihood
Back to climate
Hydrological models and the Generalized Pareto
Finding the normal CDF

\[\text{erf}(x) = F(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-u^2/2} du \]

and the tail probability

\[\text{erfc}(x) = 1 - \text{erf}(x) \]

Compute \(F(0.25) \)

in R
> pnorm(0.25)
[1] 0.59870632568292
Finding the normal CDF

How is this really computed?
(try to find pnorm.c within the R source code)

\[
\begin{align*}
\text{erf} (x) & \simeq x R_{lm}(x^2) , \quad |x| \leq .5 , \\
\text{erfc} (x) & \simeq e^{-x^2} R_{lm}(x) , \quad .46875 \leq x \leq 4.0 , \\
\text{erfc} (x) & \simeq \frac{e^{-x^2}}{x} \left\{ \frac{1}{\sqrt{\pi}} + \frac{1}{x^2} R_{lm}(1/x^2) \right\} , \quad x \geq 4 ,
\end{align*}
\]

\[R_{lm}(x) = P_l(x)/Q_m(x)\] a ratio of a 5th and a 4th degree polynomial.
Accurate to 14 digits!

Approximation works – but it is mysterious!
Another computation

A 16×16 spatial field

\rightarrow MLEs for covariance parameters

The MLE estimator in this case is the function

$$\mathcal{F}(\text{field}) \rightarrow \hat{\theta}, \hat{\lambda}$$

$$\mathbb{R}^{256} \rightarrow \mathbb{R}^{2}$$

In the fields package and for a Matern

fit <- spatialProcess(x, y, smoothness=.5)
Example of a statistical approximation

Use a deep network (CNN or dense network) to approximate “maximum likelihood estimates”.

The F!

- Covariance parameters for a Gaussian spatial process.
- Parameters of the extreme value distribution

Approximation works – but it is mysterious!
Climate model output

Local temperature sensitivity to global temperature
First 8 out of 30 centered ensemble members

Goal: Simulate additional fields efficiently that match the spatial dependence in this 30 member ensemble.
A Statistical Approach

- ≈ 13K grid boxes over N and S America
- Estimate a spatially varying covariance function by fitting stationary covariances to small windows. \((16 \times 16)\)
- Range and variance parameter for each window.
- Encode local estimates into a global model to simulate Gaussian random fields.

 This is Ashton Wiens Ph D work.

Train a convolution neural net (CNN) on the “image” to estimate covariance parameters.

Or train a dense neural net on the variogram

We found a speedup by a factor of 100!
Matérn covariance function

Covariance function:

\[k(x_1, x_2) = \sigma^2 \text{Matern function } \nu(d) \]

with \(d = \frac{||x_1 - x_2||}{\theta} \)

- Matérn function is a modified Bessel function.
- Smoothness \(\nu \) measures number of mean square derivatives and is equivalent to the polynomial tail behavior of the spectral density.
- \(\theta \) is the range parameter.
- For \(\nu = .5 \): the classic exponential

\[k(x_1, x_2) = \sigma^2 e^{-||x_1 - x_2||/\theta} \]
Observational model

\[Y(x) = g(x) + e(x) \]

with \(g \) following a Gaussian process with Matérn covariance, variance \(\sigma^2 \) and \(e \) white noise, variance \(\tau^2 \).

We are interested in maximum likelihood estimates for \(\theta \) (range), \(\sigma^2 \) and \(\tau^2 \).

- A useful short cut is to focus on \(\theta \) and \(\lambda = \sigma^2 / \tau^2 \).
 Can convert \(\lambda \) to equivalent degrees of freedom of the smoother for \(g \).

- Analytical expressions for MLEs of \(\sigma^2 \) and \(\tau^2 \) based on MLE of \(\lambda \).
Finding the MLEs

log Likelihood for covariance parameters.

\[
- \frac{\mathbf{y}^T (\sigma^2 C(\theta) + \tau^2 I)^{-1} \mathbf{y}}{2} - \left(\frac{1}{2} \right) \ln |\sigma^2 C(\theta) + \tau^2 I| - \frac{n}{2} \ln(\pi)
\]

or concentrating onto \(\lambda \) and \(\theta \)

\[
= -\left(\frac{n}{2} \right) - \left(\frac{1}{2} \right) \ln |\hat{\sigma}^2(\theta, \lambda)(C(\theta) + \lambda I)| - \frac{n}{2} \ln(\pi)
\]

- \(C(\theta) \) correlation matrix for observations.
- No closed form for maximum.
- Often hard to find good starting values for optimization.
- Evaluating inverse and determinant can be time consuming.
Examples of training fields

\[Y(x) = g(x) + e \]

\(x \) on a 16 \(\times \) 16 grid, \(\text{Var}(Y) = 1 \),

\[\rightarrow \text{decreasing noise} \ (\tau^2) \]

increasing range (\(\theta \))

\[\downarrow \]
Variograms of training fields

\[\rightarrow \text{decreasing noise} \left(\tau^2 \right) \]

increasing range \((\theta) \)

\[\downarrow \]
Neural net setup

- A neural network is a composition of many simple functions to approximate arbitrary functions.
- It depends on estimating many parameters (weights) based on a large training sample. Training / testing sets

- Input are 16×16 Gaussian fields or their variograms
- $200 \times 201 = 40200$ values in covariance parameter space
- $\approx 1M$ fields generated for training.
- Tested on $10K$ fields from 2000 parameter combinations.
Inputs and artificial neurons

Three neurons with four available inputs:
Each neuron creates a linear combination of the inputs followed by a nonlinear transformation.

- Outputs from one layer become the inputs for another layer.
- Linear transformation is estimated (learned) for every neuron
- "Deep Learning" considers many neurons and multiple layers.

Two hidden layers:
- $4 \times (3 + 1) = 16$ parameters in second layer
- $4 \times (4 + 1) = 20$ parameters in third layer
- $4 + 1 = 5$ parameters in output layer

See Neural Networks and Deep Learning, Michael Nielsen, for a good introduction
A convolution version CNN

Designed to work on images

A linear filter is applied to every 3×3 block of the input field followed by a nonlinear transformation.

In this case the 5×5 image is reduced to a 2×2 output image.

• These filter results are then filtered again ... and again!
• Many filters (128) are considered. [🌈🌈] [🌈🌈] ... [🌈🌈]
• Filter weights found by training (of course!).
Basic functional step

Where is the neuron?

\[y_j = \phi(b + w_1 x_1 + \ldots + w_9 x_9) \]

- \(\{x_1, x_2, \ldots, x_9\} \) pixel values from 3 x 3 "image" (aka a tensor)
- \(y_j \) – the \(j^{th} \) pixel value for "image" (tensor) at next layer
- \(w \) the weights and \(b \) offset to be estimated/optimized
- \(\phi(u) = u_+ \) Rectified linear unit
Net architecture

Form for finding MLEs based on an image

<table>
<thead>
<tr>
<th>Layer</th>
<th>Operation</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Input</td>
<td>16 × 16 image</td>
</tr>
<tr>
<td>2</td>
<td>2D convolution</td>
<td>128 7 × 7 filtered images</td>
</tr>
<tr>
<td>3</td>
<td>2D convolution</td>
<td>128 3 × 3 filtered images</td>
</tr>
<tr>
<td>4</td>
<td>2D convolution</td>
<td>128 outputs</td>
</tr>
<tr>
<td>5</td>
<td>dense</td>
<td>500 outputs</td>
</tr>
<tr>
<td>6</td>
<td>dense</td>
<td>2 outputs (θ and λ)</td>
</tr>
</tbody>
</table>

636K parameters!

E.g at layer 5 there are 500 neurons each with 128 inputs, \((128 +1)\times 500\) parameters

- Simpler 2 layer dense network used for finding MLEs based on a variogram
Recall that the MLEs are “optimal” for large \(n \) based on Cramer-Rao lower bound.

![Parameter estimates on 10K test samples](image.png)
Results continued

Training:

- CNN, NN, and MLE estimates tend to track the red lines (truth)
- CNN and NN overall has comparable accuracy to the MLEs
- Potential tradeoff between bias in CNN estimates and variance in MLEs
Climate model emulation

Estimated log Variance and range

MLE NN variogram
Timing

Training the network 2 – 6 hours using cloud computing
 (but this can be shortened for a slightly less accuracy)
For the climate model output

- 12,769 windowed estimates
- 10s of seconds using the CNN, 2 minutes using the NN variogram
- \(\approx 1.5 \) hours using standard MLE fitting in R (\texttt{fields} package)

\textit{In general we find a factor of 100 or more speedup.}

Part of this may be due to the efficiency of the tensor flow libraries and low level coding.
More about irregular spatial data

Build a deep net based on the variogram statistic.

Can the variogram serve as an approximate “sufficient statistic” for a stationary covariance function?

log parameter estimates for λ and the range $\log \lambda$

![Test vs Predicted scatter plot for log lambda](image1)

![Test vs Predicted scatter plot for Range](image2)
Loose ends

- How to adjust variogram NN for different bin counts.
- Train on a SAR model (LatticeKrig, SPDE) directly instead of Matérn.
- Train for the likelihood *surface* instead of just the estimates.
Hydrologic models and extremes

Steve Sain, *Jupiter*, Maggie Bailey *Mines*
Simulating flooding from extreme precipitation

Elevations Oahu, Hawaii

Aerial view of study region and grid cell

Grid cell high water response

Simulated high water field for 60 cm
Goal is to estimate the shape (ξ) and scale parameters (σ) of a generalized Pareto distribution at many (millions) of pixels.

\[f(x) = \frac{1}{\sigma} \left(1 + \xi \frac{x - \mu}{\sigma} \right)^{-\frac{\xi+1}{\xi}} \xi \neq 0 \]

\[\frac{1}{\sigma} e^{-\frac{x - \mu}{\sigma}} \xi = 0 \]

and

\[x \geq \mu \quad \xi \geq 0 \]
\[\mu \leq x \leq \mu - \left(\frac{\sigma}{\xi} \right) \xi \leq 0 \]

- Train a neural net on finely binned histograms to obtain estimates comparable to the MLEs.
- Potential speedup will allow for data analysis on high resolution model output.
Preliminary results

Sample size of 2500, 8000/2000 cases for training/testing, $\mu = 1$ i.e. threshold is fixed.

<table>
<thead>
<tr>
<th>Method</th>
<th>Input type</th>
<th>RMSE (Shape)</th>
<th>RMSE (Scale)</th>
<th>Estimation Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLE</td>
<td></td>
<td>6.75</td>
<td>0.802</td>
<td>151 sec</td>
</tr>
<tr>
<td>Neural Network</td>
<td>Fine</td>
<td>7.73</td>
<td>2.01</td>
<td>8.19 sec</td>
</tr>
<tr>
<td>Neural Network</td>
<td>Percentile</td>
<td>95.7</td>
<td>3.26</td>
<td>7.49 sec</td>
</tr>
</tbody>
</table>

The neural network has many opportunities for optimization, from the number of layers to the number of input types. Therefore training can turn into a method of trial and error. For the architecture presented below, two inputs are considered and the percentile input performs poorly. The percentile input and further exploration into improving network architecture for the fine binned input could prove worthwhile.

Finally, network structure can take numerous forms. The structure of the network presented in this report had different set of inputs, however, may be better suited for parameter estimation. Changing the parameters of the GPD. A network with additional hidden layers, a 1D convolutional layer, or dropout layer could improve results. Overall, the accuracy of the fine binned histogram input is more promising than the architecture. A network with additional hidden layers, a 1D convolutional layer, or dropout layer could prove worthwhile.

Maximum likelihood appears comparable to the neural net fit using the fine histogram input while the percentile input performs poorly. It is important to note that there are various methods for optimizing the accuracy of a neural network and cannot be overlooked and may be better suited for GPD parameter estimation. While the neural network structure can take numerous forms. The structure of the network presented in this report had different set of inputs, however, may be better suited for parameter estimation. Changing the parameters of the GPD. A network with additional hidden layers, a 1D convolutional layer, or dropout layer could improve results. Overall, the accuracy of the fine binned histogram input is more promising than the architecture. A network with additional hidden layers, a 1D convolutional layer, or dropout layer could prove worthwhile.

The utilization of neural networks for parameter estimation is an attractive method for quick computation of the percentile input for the neural network, the accuracy of the fine histogram bins as input results in more accurate scale parameter estimates while the percentile input does better for the shape parameter. Both are not as accurate as maximum likelihood estimation, however. In particular, achieving a reasonable estimation for the scale parameter using the percentile input was difficult. Additionally, the neural network using the fine input results in an RMSE parameter. Both are not as accurate as maximum likelihood estimation, however. In particular, achieving a reasonable estimation for the scale parameter using the percentile input was difficult. Additionally, the neural network using the fine input results in an RMSE parameter. Both are not as accurate as maximum likelihood estimation, however. In particular, achieving a reasonable estimation for the scale parameter using the percentile input was difficult. Additionally, the neural network using the fine input results in an RMSE parameter. Both are not as accurate as maximum likelihood estimation, however. In particular, achieving a reasonable estimation for the scale parameter using the percentile input was difficult. Additionally, the neural network using the fine input results in an RMSE parameter. Both are not as accurate as maximum likelihood estimation, however. In particular, achieving a reasonable estimation for the scale parameter using the percentile input was difficult. Additionally, the neural network using the fine input results in an RMSE parameter. Both are not as accurate as maximum likelihood estimation, however. In particular, achieving a reasonable estimation for the scale parameter using the percentile input was difficult. Additionally, the neural network using the fine input results in an RMSE parameter. Both are not as accurate as maximum likelihood estimation, however. In particular, achieving a reasonable estimation for the scale parameter using the percentile input was difficult. Additionally, the neural network using the fine input results in an RMSE parameter. Both are not as accurate as maximum likelihood estimation, however. In particular, achieving a reasonable estimation for the scale parameter using the percentile input was difficult. Additionally, the neural network using the fine input results in an RMSE parameter. Both are not as accurate as maximum likelihood estimation, however. In particular, achieving a reasonable estimation for the scale parameter using the percentile input was difficult. Additionally, the neural network using the fine input results in an RMSE parameter. Both are not as accurate as maximum likelihood estimation, however. In particular, achieving a reasonable estimation for the scale parameter using the percentile input was difficult. Additionally, the neural network using the fine input results in an RMSE parameter. Both are not as accurate as maximum likelihood estimation, however. In particular, achieving a reasonable estimation for the scale parameter using the percentile input was difficult. Additionally, the neural network using the fine input results in an RMSE parameter. Both are not as accurate as maximum likelihood estimation, however. In particular, achieving a reasonable estimation for the scale parameter using the percentile input was difficult. Additionally, the neural network using the fine input results in an RMSE parameter. Both are not as accurate as maximum likelihood estimation, however. In particular, achieving a reasonable estimation for the scale parameter using the percentile input was difficult. Additionally, the neural network using the fine input results in an RMSE parameter. Both are not as accurate as maximum likelihood estimation, however. In particular, achieving a reasonable estimation for the scale parameter using the percentile input was difficult. Additionally, the neural network using the fine input results in an RMSE parameter. Both are not as accurate as maximum likelihood estimation, however. In particular, achieving a reasonable estimation for the scale parameter using the percentile input was difficult. Additionally, the neural network using the fine input results in an RMSE parameter. Both are not as accurate as maximum likelihood estimation, however. In particular, achieving a reasonable estimation for the scale parameter using the percentile input was difficult. Additionally, the neural network using the fine input results in an RMSE parameter. Both are not as accurate as maximum likelihood estimation, however. In particular, achieving a reasonable estimation for the scale parameter using the percentile input was difficult. Additionally, the neural network using the fine input results in an RMSE parameter. Both are not as accurate as maximum likelihood estimation, however. In particular, achieving a reasonable estimation for the scale parameter using the percentile input was difficult. Additionally, the neural network using the fine input results in an RMSE parameter. Both are not as accurate as maximum likelihood estimation, however. In particular, achieving a reasonable estimation for the scale parameter using the percentile input was difficult. Additionally, the neural network using the fine input results in an RMSE parameter. Both are not as accurate as maximum likelihood estimation, however. In particular, achieving a reasonable estimation for the scale parameter using the percentile input was difficult. Additionally, the neural network using the fine input results in an RMSE parameter. Both are not as accurate as maximum likelihood estimation, however. In particular, achieving a reasonable estimation for the scale parameter using the percentile input was difficult. Additionally, the neural network using the fine input results in an RMSE parameter. Both are not as accurate as maximum likelihood estimation, however. In particular, achieving a reasonable estimation for the scale parameter using the percentile input was difficult. Additionally, the neural network using the fine input results in an RMSE parameter. Both are not as accurate as maximum likelihood estimation, however. In particular, achieving a reasonable estimation for the scale parameter using the percentile input was difficult. Additionally, the neural network using the fine input results in an RMSE parameter. Both are not as accurate as maximum likelihood estimation, however. In particular, achieving a reasonable estimation for the scale parameter using the percentile input was difficult. Additionally, the neural network using the fine input results in an RMSE parameter. Both are not as accurate as maximum likelihood estimation, however. In particular, achieving a reasonable estimation for the scale parameter using the percentile input was difficult. Additionally, the neural network using the fine input results in an RMSE parameter. Both are not as accurate as maximum likelihood estimation, however. In particular, achieving a reasonable estimation for the scale parameter using the percentile input was difficult. Additionally, the neural network using the fine input results in an RMSE parameter. Both are not as accurate as maximum likelihood estimation, however. In particular, achieving a reasonable estimation for the scale parameter using the percentile input was difficult. Additionally, the neural network using the fine input results in an RMSE parameter. Both are not as accurate as maximum likelihood estimation, however. In particular, achieving a reasonable estimation for the scale parameter using the percentile input was difficult. Additionally, the neural network using the fine input results in an RMSE parameter. Both are not as accurate as maximum likelihood estimation, however. In particular, achieving a reasonable estimation for the scale parameter using the percentile input was difficult. Additionally, the neural network using the fine input results in an RMSE parameter. Both are not as accurate as maximum likelihood estimation, however. In particular, achieving a reasonable estimation for the scale parameter using the percentile input was difficult. Additionally, the neural network using the fine input results in an RMSE parameter. Both are not as accurate as maximum likelihood estimation, however. In particular, achieving a reasonable estimation for the scale parameter using the percentile input was difficult. Additionally, the neural network using the fine input results in an RMSE parameter. Both are not as accurate as maximum likelihood estimation, however. In particular, achieving a reasonable estimation for the scale parameter using the percentile input was difficult. Additionally, the neural network using the fine input results in an RMSE parameter. Both are not as accurate as maximum likelihood estimation, however. In particular, achieving a reasonable estimation for the scale parameter using the percentile input was difficult. Additionally, the neural network using the fine input results in an RMSE parameter. Both are not as accurate as maximum likelihood estimation, however. In particular, achieving a reasonable estimation for the scale parameter using the percentile input was difficult. Additionally, the neural network using the fine input results in an RMSE parameter. Both are not as accurate as maximum likelihood estimation, however. In particular, achieving a reasonable estimation for the scale parameter using the percentile input was difficult. Additionally, the neural network using the fine input results in an RMSE parameter. Both are not as accurate as maximum likelihood estimation, however. In particular, achieving a reasonable estimation for the scale parameter using the percentile input was difficult. Additionally, the neural network using the fine input results in an RMSE parameter. Both are not as accurate as maximum likelihood estimation, however. In particular, achieving a reasonable estimation for the scale parameter using the percentile input was difficult. Additionally, the neural network using the fine input results in an RMSE parameter. Both are not as accurate as maximum likelihood estimation, however. In particular, achieving a reasonable estimation for the scale parameter using the percentile input was difficult. Additionally, the neural network using the fine input results in an RMSE parameter. Both are not as accurate as maximum likelihood estimation, however. In particular, achieving a reasonable estimation for the scale parameter using the percentile input was difficult. Additionally, the neural network using the fine input results in an RMSE parameter. Both are not as accurate as maximum likelihood estimation, however. In particular, achieving a reasonable estimation for the scale parameter using the percentile input was difficult. Additionally, the neural network using the fine input results in an RMSE parameter. Both are not as accurate as maximum likelihood estimation, however. In particular, achieving a reasonable estimation for the scale parameter using the percentile input was difficult. Additionally, the neural network using the fine input results in an RMSE parameter. Both are not as accurate as maximum likelihood estimation, however. In particular, achieving a reasonable estimation for the scale parameter using the percentile input was di...
Summary

- Exploit fast simulation of statistical samples to train a neural net.
- Neural nets can accurately reproduce statistical computations but evaluate much more quickly.
- Training and test samples provide a rigorous way to insure neural net approximations.
Thank you
An example of a Keras/R specification

- NxN image initial image, and 3X3 filters interspersed with max pooling reductions.
- Final step takes the last ”image” and feeds to a dense neural network with 2 outputs

```r
modelMatern11 %>%
  layer_conv_2d( 32, kernel_size=3, activation='relu',
                 input_shape=c(N,N,1) ) %>%
  layer_max_pooling_2d() %>%
  layer_conv_2d( 32, kernel_size=3, activation='relu') %>%
  layer_max_pooling_2d() %>%
  layer_flatten() %>% layer_dense(2)
```
Keras model summary

```r
> modelMatern11
Model
Model: "sequential"

<table>
<thead>
<tr>
<th>Layer (type)</th>
<th>Output Shape</th>
<th>Param #</th>
</tr>
</thead>
<tbody>
<tr>
<td>conv2d (Conv2D)</td>
<td>(None, 14, 14, 32)</td>
<td>320</td>
</tr>
<tr>
<td>max_pooling2d (MaxPooling2D)</td>
<td>(None, 7, 7, 32)</td>
<td>0</td>
</tr>
<tr>
<td>conv2d_1 (Conv2D)</td>
<td>(None, 5, 5, 32)</td>
<td>9248</td>
</tr>
<tr>
<td>max_pooling2d_1 (MaxPooling2D)</td>
<td>(None, 2, 2, 32)</td>
<td>0</td>
</tr>
<tr>
<td>flatten (Flatten)</td>
<td>(None, 128)</td>
<td>0</td>
</tr>
<tr>
<td>dense (Dense)</td>
<td>(None, 2)</td>
<td>258</td>
</tr>
</tbody>
</table>

Total params: 9,826
Trainable params: 9,826
Non-trainable params: 0
```