Learning a stationary covariance

Douglas Nychka

Colorado School of Mines

August 6, 2020

Outline

- Abramowitz and Stegun
- Climate model output
- Training Deep Nets on Gaussian Processes
- Comparison to Maximum likelihood
- Back to climate

Example of a statistical approximation

The normal cdf to 7 digits from Abramowitz and Stegun

Approximation works - but it is mysterious!

Example of a statistical approximation

Use convolutional neural networks (CNNs) to approximate maximum likelihood estimates.

E.g. Covariance parameters for a Gaussian spatial process.

Approximation works - but it is mysterious!

Climate model output

Local temperature sensitivity to global temperature First 8 out of 30 *centered* ensemble members

Goal: Simulate additional fields efficiently that match the spatial dependence in this 30 member ensemble.

A Statistical Approach

- ullet pprox 13K grid boxes over N and S America
- Estimate a spatially varying covariance function by fitting stationary covariances to small windows. (16×16)
- Range and variance parameter for each window.
- Encode local estimates into a global model to simulate Gaussian random fields.

Train a convolution neural net (CNN) to estimate covariance parameters.

I found a speedup by a factor of 50!

Matérn covariance function

Covariance function:

$$k(\mathbf{x}_1, \mathbf{x}_2) = \sigma^2$$
Matern function $_{\nu}(d)$

with $d = ||x_1 - x_2||/\theta$

- Matérn function is \mathcal{K}_{ν} a modified Bessel function.
- ullet Smoothness u measures number of mean square derivatives and is equivalent to the polynomial tail behavior of the spectral density.
- \bullet θ is the range parameter.

Observational model

$$Y(\mathbf{x}) = g(\mathbf{x}) + \mathbf{e}(\mathbf{x})$$

with g following a Gaussian process with Matérn covariance and e white noise, variance τ^2 .

We are interested in θ (range) and $\log(\tau^2)$ (log Variance).

Examples of training fields

$$Y(oldsymbol{x}) = g(oldsymbol{x}) + oldsymbol{e}$$
 $oldsymbol{x}$ on a $16 imes 16$ grid, $Var(Y) = 1$,

increasing range (θ)

Neural net setup

Training / testing sets

- Input are 100K 16×16 Gaussian fields
- Grid of $20 \times 20 = 400$ range and log Variance levels
- ullet Tested on $5 \times 6 = 30$ range and log Variance levels 4500 total
- MLEs for range and log variance found for each test image.

The CNNs

Simple example of net architecture and training

- Two convolution layers with 32, 3×3 filters
- max pooling layers inbetween.
- Flattened layer with fully connected neural network 128 inputs and giving two output values (range and log variance).
- A total of about 9800 CNN parameters to train.
- Training on batches of 128 and 30 epochs takes several minutes.

Used the Keras interface in R for Tensor Flow - Easy!

A convolution step

A linear filter is applied to every 3×3 block of the input field followed by a nonlinear transformation

- These filter results are then filtered again . . . and again !
- Many filters (32) are considered.
- Filter weights found by training (of course!).

Parameters from the CNN verses MLEs

Red lines indicate true parameters Range parameters (2,7,12,17,22)

log Variance (various)

Results continued

- CNN and MLE estimates tend to track the red lines (truth)
- CNN overall has comparable accuracy to the MLEs
- CNN does not do as well for high noise and large ranges
- Tradeoff between bais in CNN estimates and variance in MLEs

Climate model emulation

Estimated log Variance and range using the CNN

Timing

On my **MacBook Pro** 2.3 Ghz i5 core, 8GB memory, and in R . . .

- Reshaping data for processing is surprisingly fast.
- 13K \times 30 CNN estimates tic/ toc $\rightarrow \approx$ 14 seconds
- 13K \times 30 MLEs tic/ toc $\rightarrow \approx$ 860 seconds optimized as a tricksy coarse grid search will be much longer with more parameters

Loose ends

- How to train using replicate spatial fields?
- Train on a SAR model (LatticeKrig, SPDE) directly instead of Matérn .
- Train for the likelihood *surface* instead of just the estimates.
- Understand why this works!

Thank you

Keras/R specification

Keras model summary

> modelMatern11

Model

Model: "sequential"

Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 14, 14, 32)	320
max_pooling2d (MaxPooling2D)	(None, 7, 7, 32)	0
conv2d_1 (Conv2D)	(None, 5, 5, 32)	9248
max_pooling2d_1 (MaxPooling2D)	(None, 2, 2, 32)	0
flatten (Flatten)	(None, 128)	0
dense (Dense)	(None, 2)	258

Total params: 9,826 Trainable params: 9,826 Non-trainable params: 0
