Nonstationary spatial data: think globally act locally

Douglas Nychka, National Center for Atmospheric Research

May 2018

Summary

- Two applications from climate science
- Nonstationary Gaussian fields
- Unconditional simulation of pattern scaling fields
- Conditional simulation of ocean temperature fields
- Big Data analysis on super computers (Big R)

Challenges:

Building convolution covariance models for large problems and actually computing the beasts!

Credits

• Pattern scaling - simulation, Ashton Weins (CU), Mitchell Crock (CU), Dorit Hammerling (NCAR).

 ARGO floats - conditional simulation, Mikael Kuusela (SAMSI), Michael Stein (UC-Rutgers), Pulong Ma (U Cincinnati)

Kuusela, M. and Stein M. (2017). Locally stationary spatio-temporal interpolation of Argo profiling float data arXiv:1711.00460v2

PART 1 Spatial problems in climate science

Future Climate

What will the climate be in 60 years?

 Need a scenario of future human activities.
 The representative concentration pathway (RCP) is a synthesis that specifies how greenhouse gases change over time.

• Need a geophysical model to relate the RCP to possible changes in climate.

Community Earth System Model (CESM)

A family of models developed at NCAR and supported by the National Science Foundation.

CESM Large Ensemble (CESM-LE)

A 30+ member ensemble of CESM simulations that have been designed to study the local effects of climate change

- and the uncertainty due to the natural variability in the earth system.
- $\approx 1^{\circ}$ spatial resolution about 55K locations
- Simulation period 1920 2080
- Using RCP 8.5 after 2005

Mean scaling pattern CESM Slopes across 30 members for JJA

E. g. value of 2.5 means: a 1° global increase implies 2.5° increase locally.

This allows us to determine the local mean temperature change based on a simpler model for the global average temperature

Individual patterns

Goal: Simulate additional fields efficiently that match the spatial dependence in this 30 member ensemble.

Ocean heat content

- The ARGO observation network provides profiles of ocean temperature and salinity
- Measurements are irregular in space and time, \approx 4000 floats taking profiles every 10 days

Temperature at 300 db for February, 2012.

Goal: Estimate the temperature field at different depths and times with measures of uncertainty

NCAR D. Nychka Global and local

PART 2 Nonstationary Gaussian Processes

Gaussian process models

f(s) value of the field at location s.

E[f(s)] = 0 and $k(s_1, s_2) = E[f(s_1)f(s_2)]$

• f(s) is a Gaussian process if any finite collection of $\{f(s_1), \ldots, f(s_N)\}$ has a multivariate normal distribution.

• f is mean square continuous (differentiable) if k is continuous (differentiable) in both s_1 and s_2 .

• An example of exponential covariance for a process that is stationary and isotropic:

$$k(s_1, s_2) = \sigma^2 e^{(\frac{||s_1 - s_2||}{\theta})}.$$

– a strong assumption, note two covariance parameters σ and θ

Matérn covariance function

 $k(s_1, s_2) = \sigma^2 \text{Matern}_{\nu}(d) = \sigma^2 C d^{\nu} \mathcal{K}_{\nu}(d),$ and $d = ||s_1 - s_2||/\theta$

- \mathcal{K}_{ν} a modified Bessel function.
- C a normalizing constant depending on ν .

• Smoothness ν measures number of mean square derivatives and is equivalent to the polynomial tail behavior of the spectral density.

• σ^2 the process marginal variance

• When $\nu = .5$, Matérn is an exponential covariance, $\nu = \infty$, a Gaussian.

Nonstationary covariance functions

• Convolution model (Higdon, Fuentes)

Represent the process first, then figure out the covariance function

$$g(s) = \int_{\Re^2} H(s, u) dW(u)$$

dW(u) a two dimensional standard, white noise process.

The covariance function:

$$k(s_1, s_2) = \int_{\Re^2} H(s_1, u) H(s_2, u) du$$

 H can be the Green's function for a stochastic PDE (– a connection to INLA)

NCAR D. Nychka Global and local

2-D exponential kernel example:

$$H(s,u) = rac{\sigma(s)}{ heta(s)} e^{-||s-u||/ heta(s)|}$$

$$k_{\theta}(s_1, s_2) = \sigma(s_1)\sigma(s_2) \int \frac{1}{\theta(s_1)\theta(s_2)} e^{-||s_1 - u||/\theta(s_1)} e^{-||s_2 - u||/\theta(s_2)} du$$

• If $\theta(s) \equiv \theta$ in 2-d this gives a Matérn with smoothness $\nu = 1.0$

• For unequal θ no simple closed form for this covariance.

Scale mixture (Paciorek, Stein)

 $\nu = 1.0$

 $k(s_1, s_2) \sim d\mathcal{K}_1(d),$

where

$$d = \frac{||s_1 - s_2||}{\sqrt{\theta(s_1)^2 + \theta(s_2)^2}}$$

These are different models.

Conjecture: as $\theta(s_2) \rightarrow 0$ give different smoothness at s_2

Open question how to figure out which model is more appropriate

Joint distribution

Observations

 $y(s_i) = f(s_i) + e_i$

 $K_{i,j} = k(s_i, s_j)$ and f is MN(0, K)

log Likelihood

 $\ell(\boldsymbol{y}, [\sigma^2, \theta, \tau]) = -(1/2)\boldsymbol{y}^T (K + \tau^2 I)^{-1} \boldsymbol{y} - (1/2) \log |K + \tau^2| + C$

- Maximize to find parameters
- For large data sets K is also large.

Simulating a Gaussian Process at locations s_1, \ldots, s_M

• Form $K_{i,j} = k(s_i, s_j)$ covariance matrix at locations

• $f = \Omega e$ where e are iid N(0, 1)

 Ω is the matrix square root of K

Conditional simulation of a Gaussian Process at locations s_1^g, \ldots, s_M^g conditional on observations y_1, \ldots, y_N at s_1^o, \ldots, s_N^o

• Form $K_{o,o}$ Covariance matrix at observations locations $K_{g,g}$ Covariance matrix at grid locations $K_{g,o}$ Cross-covariance matrix between grid and observation locations • $f = \hat{f} + \Omega e$ where e are iid N(0, 1) \hat{f} the conditional expectation for bbf (aka Kriging) Ω is the matrix square root of $K_{g,g} - K_{g,o}(K_{o,o} + \tau^2 I)^{-1}K_{g,o}^T$

PART 3 Unconditional simulation

Climate model patterns

Local Matérn MLEs for the 30 member ensemble patterns

- \bullet 11 \times 11 windows using coordinates in degrees
- About 13K grid boxes in this subregion

What should we do with these?

• Assume that the parameter estimates at the center of the window are good estimates for the parameter "fields" $\sigma(s)$, $\theta(s)$, and $\tau(s)$.

• RECALL Form $K_{i,j} = k(s_i, s_j)$ covariance matrix at all observation locations

• $f = \Omega e$ where e are iid N(0, 1) Ω is the matrix square root of K

PROBLEM: *K* is too big for computation.

SOLUTION:

Reexpress model in more computable form.

• Approximate the nonstationary model with a spatial autoregressive model (SAR)

(Parameters of the local Matérn models encoded as parameter fields in the LatticeKrig model.)

• Exploit sparse matrix methods to implement $f = \Omega e$ where e are iid N(0, 1) Ω^T is the sparse Cholesky decoposition of K

A Spatial Autoregression (SAR)

Gridded field:

- • •
- . . *c*₁ . .
- . *c*₂ *c*_{*} *c*₃ .
- . . *C*₄ . .

SAR weights:

- . -1 a(s) -1 .. -1 . . .

.

The filter:

 $a(s)c_* - (c_1 + c_2 + c_3 + c_4) =$ white noise

- a(s) needs to be greater than 4. $1/\sqrt{a(s)-4}$ – an approximate range parameter
- Bc = i.i.d.N(0, 1) where B is a sparse matrix
- Covariance for c is $(B^T B)^{-1} = Q^{-1} = K$

NCAR D. Nychka Global and local

Representing a random surface

$$g(x) = \sum_{j} \phi_j(x) c_j$$

• c is the random field from the SAR.

• $\{\phi_j(x)\}$ are compact, radial basis functions :

$$\phi_j(x) = \psi(||s - u_j||/\delta)$$

A member of the Wendland basis functions

Emulating pattern scaling fields

Statisitical model

Ensemble members

National Science Foundation

24

0.5

0.0

-0.5

PART 4 Conditional simulation

Ocean temperatures

Predicted surface temperature field from ARGO float observations (Kuusela and Stein (2017))

- Covariance parameters are from Matérn family
- local windows of 20×20 degrees and 1 month
- student-T distribution used to account for heavy tailed observations.

What should we do with these?

• Assume that the parameter estimates at the center of the window are good estimates for the parameter "fields" $\sigma(s)$, $\theta(s)$, and $\tau(s)$.

• RECALL

• $f = \hat{f} + \Omega e$ where e are iid N(0, 1) \hat{f} the conditional expectation for bbf (aka Kriging) Ω is the matrix square root of

$$K_{g,g} - K_{g,o}(K_{o,o})^{-1}K_{g,o}^T$$

PROBLEM: all the Ks are too big for computation.

SOLUTION: Simulate conditional field by moving local neighborhoods

• Generate a realization of e on the grid.

LOOP OVER GRID LOCATIONS

 \bullet For each grid location evaluate Ω in a local neighbor centered at this point, Ω_{local}

- Find the symmetric square root of Ω_{local}
- Apply the center row of square root matrix to the right subset of e.
 (throw the other rows away!)

END LOOP

This is an embarrassingly parallel computation.

ARGO analysis

Conditional Mean

Draw from Conditional Distribution

Why this works

• The "screening effect" for spatial prediction suggests that the Ω matrix will largely depend on a local neighborhood of the observations.

• Can compute explicitly how well the center row of $\Omega_{local}^{1/2}$ approximates a much larger domain/neighborhood.

smoothness 1, window is 200 points

Range parameter for GP

Values of τ^2 .005, .01, .1, .5, 1.0

PART 5:

Parallel computation with R

The Cheyenne supercomputer.

 \approx 145K cores = 4032 nodes \times 36 cores and each core with 2Gb memory 52Pb parallel file system

- Core-hours are available to the NSF research community.
- Simple application process for graduate student allocations.
- Implementation of R on batch and interactive nodes.

NCAR D. Nychka Global and local

National Science Foundation

Are zillions of R workers feasible?

Yes for embarassingly parallel data analysis.

- Rmpi used to initiate many parallel R sessions from within a supervisor R session.
- Time to initiate 1000 workers takes about 1 minute.
- Little time lost in broadcasting the data object (12Mb) about 3 seconds.

Approximate linear scaling using Rmpi

Individual times for: **spawn** broadcast apply

Wall clock time in seconds to fit 1000 9×9 blocks with the LatticeKrig model.

Summary

• Emulation of climate model experiments for interpolation and uncertainty quantification is a fruitful area for data science.

• Local covariance fitting can capture variation in complex model output and in geophysical fields.

- Markov random field based models are suited for large data sets.
- There is an emerging role for supercomputers to support data analysis.

Software

- fields R package, Nychka et al. (2000 present)
- LatticeKrig R package, Nychka et al. (2014- present)
- HPC4Stats SAMSI short course August 2017, Nychka, Hammerling and Lenssen.

Background reading

Nychka, D., Hammerling, D., Krock, M. Wiens, A. (2017). Modeling and emulation of nonstationary Gaussian fields. *arXiv:1711.08077*

Kuusela, M and Stein M. (2017). Locally stationary spatio-temporal interpolation of Argo profiling float data arXiv:1711.00460v2

Alexeeff, S. E., Nychka, D., Sain, S. R., & Tebaldi, C. (2016). Emulating mean patterns and variability of temperature across and within scenarios in anthropogenic climate change experiments. *Climatic Change*, 1-15.

Nychka, D., Bandyopadhyay, S., Hammerling, D., Lindgren, F., & Sain, S. (2015). A multi-resolution Gaussian process model for the analysis of large spatial datasets.

Journal of Computational and Graphical Statistics, 24(2), 579-599. NCAR D. Nychka Global and local 36

Thank you!

National Science Foundation

