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Summary

e [wo applications from climate science

e Nonstationary Gaussian fields

e Unconditional simulation of pattern scaling fields
e Conditional simulation of ocean temperature fields
e Big Data analysis on super computers (Big R )

Challenges:

Building convolution covariance models for large problems and actually
computing the beasts!
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Credits

e Pattern scaling - simulation, Ashton Weins (CU), Mitchell Crock (CU),
Dorit Hammerling (NCAR).

e ARGO floats - conditional simulation, Mikael Kuusela (SAMSI), Michael
Stein (UC-Rutgers), Pulong Ma (U Cincinnati)

Kuusela, M. and Stein M. (2017). Locally stationary spatio-temporal
interpolation of Argo profiling float data
arXiv:1711.00460v2
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PART 1
Spatial problems in climate science
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Future Climate

What will the climate be in 60 years?

e Need a scenario of future human activities.
The representative concentration pathway (RCP) is a synthesis that
specifies how greenhouse gases change over time.

e Need a geophysical model to relate the RCP to possible changes in

climate.

Community Earth System Model (CESM)
A family of models developed at NCAR and supported by the National
Science Foundation.
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CESM Large Ensemble (CESM-LE)

A 304+ member ensemble of CESM simulations that have been designed

to study the local effects of climate change
— and the uncertainty due to the natural variability in the earth system.

e ~ 1° spatial resolution — about 55K locations
e Simulation period 1920 - 2080
e Using RCP 8.5 after 2005
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Mean scaling pattern CESM
Slopes across 30 members for JJA

E. g. value of 2.5 means: a 1° global increase implies 2.5° increase
locally.

This allows us to determine the local mean temperature

change based on a simpler model for the global average
temperature
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Individual patterns

Ensemble mean ut of 30
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Goal: Simulate additional fields efficiently that match the spatial de-
pendence in this 30 member ensemble.
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Ocean heat content

e [T he ARGO observation network provides profiles of ocean tempera-

ture and salinity
e Measurements are irregular in space and time, ~ 4000 floats taking

profiles every 10 days

Temperature at 300 db for February, 2012.
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Goal: Estimate the temperature field at different depths and times
with measures of uncertainty
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PART 2 :
Nonstationary Gaussian Processes
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Gaussian process models

f(s) value of the field at location s.

E[f(s)] =0 and k(s1,s2) = E[f(s1)f(s2)]

e f(s) is a Gaussian process if any finite collection of {f(s1),..., f(sy)}
has a multivariate normal distribution.

e f is mean square continuous (differentiable) if k is continuous (differ-
entiable) in both s; and s».

e An example of exponential covariance for a process that is stationary
and isotropic:

S1 — S
2,(lls1 2||).
v,
— a strong assumption, note two covariance parameters o and 6

k(s1,82) =0
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Matérn covariance function

k(s1,85) = o?Matern,(d) = 02Cd"K.,(d),
and d = |[|s1 — s2||/0

e Cy a modified Bessel function.
e C a normalizing constant depending on v.

e Smoothness v measures number of mean square derivatives and is
equivalent to the polynomial tail behavior of the spectral density.

e o2 the process marginal variance

e When v = .5, Matérn is an exponential covariance, v = oo, a Gaussian.
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Nonstationary covariance functions

e Convolution model (Higdon, Fuentes)

Represent the process first, then figure out the covariance function

g(s) = /%2 H(s, w)dW (u)

dW(u) a two dimensional standard, white noise process.

The covariance function:

k(s1,80) = /%2 H(s1,u)H (s>, u)du

e H can be the Green’s function for a stochastic PDE ( — a connection
to INLA)
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2-D exponential kernel example:

s ) = 788 —jis—ull/6(s)
H( ’ )_ 9(8) S—Uu S

1

81—l /0(s1) —I|82—ull/6(82) 4o,
1)0(s2)

ko(s1,2) = o (s1)0(52) [ 5

e If 6(s) =0 in 2-d this gives a Matérn with smoothness v = 1.0

e For unequal & no simple closed form for this covariance.
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Scale mixture (Paciorek, Stein)

=il
k(s1,s82) ~ dK1(d),
where
o 80l
V0(51)2 + 0(52)2

T hese are different models.

Conjecture: as 0(s>) — 0 give different smoothness at s-

Open question how to figure out which model is more appropriate
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Joint distribution

Observations

y(si) = f(s;) + e
K; ; = k(s;,s;) and f is MN(O, K)

log Likelihood

U(y,[62,0,7]) = —(1/2)yT (K + 721) "Ly — (1/2)log| K + 72| +C

e Maximize to find parameters

e For large data sets K is also large.
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Simulating a Gaussian Process
at locations s1,...,8),

e Form K; ; = k(s;,s;) covariance matrix at locations
e f = Qe where e are iid N(0,1)
€2 is the matrix square root of K

Conditional simulation of a Gaussian Process
: g g

at locations s3,..., s,

conditional on observations y1,...,yy at s9,...,s%

e Form K, , Covariance matrix at observations locations

Kgq4,4 Covariance matrix at grid locations

Kg4,0 Cross-covariance matrix between grid and observation locations
o f = f 4+ Qe where e are iid N(0,1)

f the conditional expectation for bbf (aka Kriging)

Q2 is the matrix square root of Kg 4 — Kg.0(Ko.0 + 721)—1Kg:0

K "
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PART 3 Unconditional simulation
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Climate model patterns

Local Matérn MLEs for the 30 member ensemble patterns
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e 11x 11 windows using coordinates in degrees
e About 13K grid boxes in this subregion
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VWhat should we do with these?

e Assume that the parameter estimates at the center of the window are
good estimates for the parameter “fields” o(s), 6(s), and 7(s).

e RECALL Form K, ,; = k(s;,s;) covariance matrix at all observation
locations

e f = Qe where e are iid N(0,1)

(2 is the matrix square root of K

PROBLEM:
K is too big for computation.
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SOLUTION:

Reexpress model in more computable form.

e Approximate the nonstationary model with a spatial autoregressive
model (SAR)

(Parameters of the local Matérn models encoded as parameter fields in
the LatticeKrig model.)

e EXploit sparse matrix methods to implement
f = Qe where e are iid N(0,1)
Q1 is the sparse Cholesky decoposition of K
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A Spatial Autoregression (SAR)

Gridded field: SAR weights:
e R Sy -1 :
MR s S . -1 a(s) —1
o Mt Bate -1
T he filter:

a(s)cx — (c1 + ¢ + ¢34+ ca4) = white noise

e a(s) needs to be greater than 4.
1/\/0,(.3) — 4 — an approximate range parameter

e Bc=i.i.d.N(0,1) where B is a sparse matrix

e Covariance for cis (BIB)"1=Q 1=K
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Representing a random surface

gl S 0 (x)e;
J
e c is the random field from the SAR.

o {¢;(z)} are compact, radial basis functions :

¢j(x) = ¥(|[s — u;l|/d)

A member of the Wendland basis functions
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Emulating pattern scaling fields

Statisitical model

Ensemble members

-0.5 0.0 0.5
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PART 4
Conditional simulation
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Ocean temperatures

Predicted surface temperature field from ARGO float observations (
Kuusela and Stein (2017) )
e Covariance parameters are from Matérn family

e |local windows of 20x20 degrees and 1 month

e student-T distribution used to account for heavy tailed observations.

== €
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VWhat should we do with these?

e Assume that the parameter estimates at the center of the window are
good estimates for the parameter “fields” o(s), 6(s), and 7(s).

e RECALL

o f = f 4 Qe where e are iid N(0,1)

f the conditional expectation for bbf (aka Kriging)
2 is the matrix square root of

Kg)g b Kg,o(Ko,o) 2 1ngz_,'0

PROBLEM: all the Ks are too big for computation.
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SOLUTION: Simulate conditional field by moving local neighbor-
hoods

e Generate a realization of e on the grid.

LOOP OVER GRID LOCATIONS
e For each grid location evaluate €2 in a local neighbor centered at this
point, $25¢cy

e Find the symmetric square root of Qlocal

e Apply the center row of square root matrix to the right subset of e.
( throw the other rows away!)

END LOOP

This is an embarrassingly parallel computation.

~
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ARGO analysis

Conditional Mean

Temperature anomaly (°C)

Temperature anomaly (°C)

A
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Why this works

e [ he "screening effect” for spatial prediction suggests that the 2 ma-
trix will largely depend on a local neighborhood of the observations.

13/0

e Can compute explicitly how well the center row of Qlocal

a much larger domain/neighborhood.

approximates

smoothness 1, window is 200 points
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PART 5b:

Parallel computation with R
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The Cheyenne supercomputer.

~145K cores = 4032 nodes x 36 cores
and each core with 2Gb memory
52Pb parallel file system

e Core-hours are available to the NSF research community.
e Simple application process for graduate student allocations.

e Implementation of R on batch and interactive nodes.
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Are znlllons of R workers feasible?

! l

Yes for embarassingly parallel data analysis.

e Rmpi used to initiate many parallel R sessions
from within a supervisor R session.
e [ime to initiate 1000 workers takes about 1 minute.

e Little time lost in broadcasting the data object (12Mb) — about 3
seconds.
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Approximate linear scaling using Rmpi

Individual times for:

broadcast apply

o ] @
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e LatticeKrig model.
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Summary

e Emulation of climate model experiments for interpolation and uncer-
tainty quantification is a fruitful area for data science.

e Local covariance fitting can capture variation in complex model output
and in geophysical fields.

e Markov random field based models are suited for large data sets.

e Thereis an emerging role for supercomputers to support data analysis.

Software

e fields R package, Nychka et al. (2000 - present)

e LatticeKrig R package, Nychka et al. (2014- present)

e HPC4Stats SAMSI short course August 2017, Nychka, Hammerling and
enssen.
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T hank you!
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