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Summary
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• Two applications from climate science

• Nonstationary Gaussian fields

• Unconditional simulation of pattern scaling fields

• Conditional simulation of ocean temperature fields

• Big Data analysis on super computers (Big R )

Challenges:
Building convolution covariance models for large problems and actually

computing the beasts!



Credits

D. Nychka Global and local National Science Foundation 3

• Pattern scaling - simulation, Ashton Weins (CU), Mitchell Crock (CU),

Dorit Hammerling (NCAR).

• ARGO floats - conditional simulation, Mikael Kuusela (SAMSI), Michael

Stein (UC-Rutgers), Pulong Ma (U Cincinnati)

Kuusela, M. and Stein M. (2017). Locally stationary spatio-temporal

interpolation of Argo profiling float data

arXiv:1711.00460v2



PART 1
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Spatial problems in climate science



Future Climate
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What will the climate be in 60 years?

• Need a scenario of future human activities.

The representative concentration pathway (RCP) is a synthesis that

specifies how greenhouse gases change over time.

• Need a geophysical model to relate the RCP to possible changes in

climate.

Community Earth System Model (CESM)
A family of models developed at NCAR and supported by the National

Science Foundation.



CESM Large Ensemble (CESM-LE)
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A 30+ member ensemble of CESM simulations that have been designed

to study the local effects of climate change

– and the uncertainty due to the natural variability in the earth system.

• ≈ 1◦ spatial resolution – about 55K locations

• Simulation period 1920 - 2080

• Using RCP 8.5 after 2005



Mean scaling pattern CESM
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Slopes across 30 members for JJA

E. g. value of 2.5 means: a 1◦ global increase implies 2.5◦ increase

locally.

This allows us to determine the local mean temperature
change based on a simpler model for the global average
temperature



Individual patterns
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Ensemble mean First 8 out of 30 centered ensemble members

−0.5 0.0 0.5

Goal: Simulate additional fields efficiently that match the spatial de-

pendence in this 30 member ensemble.



Ocean heat content
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• The ARGO observation network provides profiles of ocean tempera-

ture and salinity

• Measurements are irregular in space and time, ≈ 4000 floats taking

profiles every 10 days

Temperature at 300 db for February, 2012.

(a) Park and profile cycle (b) Argo float

Figure 2: Figure (a) shows a schematic of the typical cycle of an Argo float. Most of the time, the
float drifts at the 1,000 meters parking depth. Every 10 days, it descends further to 2,000 meters, turns
on its sensors and measures a temperature and salinity profile as it ascends to the surface. (Figure
courtesy of the Argo Program, http://www.argo.ucsd.edu, http://doi.org/10.17882/42182, used
with permission.) Figure (b) shows an Argo float at the Scripps Institution of Oceanography (SIO). The
measurement sensors and an antenna for satellite communications can be seen at the top of the float. The
cylindrical part houses batteries, electronics and a hydraulic pump which is used to inflate and deflate an
external bladder at the bottom of the float to adjust its buoyancy. There are a few di↵erent models of
Argo floats. The one shown in the photo is a SOLO-II float designed and built at SIO. (Photo by Mikael
Kuusela.)

ments, while delayed-mode data has been manually checked by an oceanographic expert and
may contain finer corrections for sensor o↵sets and drift [25]. Depending on the float model and
configuration, the reported temperature and salinity values may be spot samples or pressure-bin
averages. The vertical sampling is also often nonuniform, with finer sampling closer to the sur-
face. Some floats also sample at finer temporal resolution than the nominal 10 days, in particular
in the Kuroshio region near Japan.

Two extensions of the basic Argo program are currently under development [24]: The Deep
Argo program aims to extend the vertical coverage of the Argo array to 6,000 meters, while
biogeochemical Argo floats are to be equipped with extra sensors for measuring biogeochemical
variables, such as dissolved oxygen, nitrate, chlorophyll and pH. Pilot arrays of both programs
have been deployed in certain areas of the ocean.

(b) Roemmich–Gilson climatology

The Roemmich–Gilson (RG) climatology and its anomalies [7, 26] are constructed by first es-
timating a seasonally varying mean field and them performing kriging on the mean-subtracted
monthly residuals. The vertical dimension is handled by binning the profiles into 58 pressure
bins, whose size increases with depth. The mean field is estimated using 3 adjacent pressure
levels, but the kriging for the anomalies is carried out using data from only one pressure level
at a time.
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Figure 1: Argo temperature data at 300 db (⇡ 300 m) for February 2012. Argo provides in-situ
temperature and salinity observations for the upper 2,000 m of the global ocean. The statistical question
studied in this work is how to interpolate these irregularly sampled data into a dense regular grid.

The Roemmich–Gilson climatology (along with the associated anomalies) [7] is one of the
more popular gridded Argo data products. Roemmich and Gilson first estimate the mean field
using a weighted local spatio-temporal regression fit to several years of Argo data and then per-
form kriging [17, 18] (also known as optimal interpolation [19] or objective analysis/mapping [20]
and closely related to Gaussian process regression [21]) on the mean-subtracted monthly residu-
als to obtain the interpolated anomaly fields. In this work, we use the Roemmich–Gilson mean
field, but improve the modeling of the anomalies in three important ways: first, we include time
in the interpolation; second, we use data-driven local estimates of the nonstationary covariance
structure as described above; and third, we consider Student-t distributed microscale variation
(the so-called nugget e↵ect) in order to account for non-Gaussian heavy tails in Argo data.
We investigate the point prediction and uncertainty quantification performance of the proposed
approach using cross-validation studies. We demonstrate that adding the temporal component
to the mapping leads to major performance improvements, while the locally estimated model
parameters and the Student nugget are crucial for obtaining reasonable uncertainties. The un-
certainty quantification part is particularly important as the Roemmich–Gilson data product
does not currently provide any uncertainty information, presumably due to challenges in model-
ing the nonstationary and non-Gaussian features of the data. Furthermore, our local estimates
of the model parameters contain information about ocean dynamics and are of scientific interest
in their own right. In fact, even the basic idea of using the observed data to estimate the covari-
ance parameters needed in the mapping appears to be largely unexplored in the oceanographic
context. Indeed, most of the existing Argo data products (see Sections 2(b) and 2(c) for a litera-
ture review) do not use formal data-driven criteria, such as maximum likelihood, to estimate the
model parameters, even though such techniques are standard in the relevant statistics literature
[18, 21, 17, 10]. A notable exception is the work described in [2, 22] where ocean velocity fields
are mapped based on variogram fits to Argo data.

In the present paper we focus primarily on interpolating Argo temperature anomalies, but
similar techniques can be developed for the salinity fields. The rest of this paper is structured
as follows: Section 2 provides an overview of Argo and reviews the existing gridded Argo data
products with an emphasis on the Roemmich–Gilson climatology. Section 3 explains the pro-
posed locally stationary spatio-temporal interpolation methodology. Section 4 applies the new
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Goal: Estimate the temperature field at different depths and times

with measures of uncertainty
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PART 2
Nonstationary Gaussian Processes



Gaussian process models
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f(s) value of the field at location s.

E[f(s)] = 0 and k(s1, s2) = E[f(s1)f(s2)]

• f(s) is a Gaussian process if any finite collection of {f(s1), . . . , f(sN)}
has a multivariate normal distribution.

• f is mean square continuous (differentiable) if k is continuous (differ-

entiable) in both s1 and s2.

• An example of exponential covariance for a process that is stationary

and isotropic:

k(s1, s2) = σ2e(||s1 − s2||
θ

).

– a strong assumption, note two covariance parameters σ and θ



Matérn covariance function
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k(s1, s2) = σ2Maternν(d) = σ2CdνKν(d),

and d = ||s1 − s2||/θ

• Kν a modified Bessel function.

• C a normalizing constant depending on ν.

• Smoothness ν measures number of mean square derivatives and is

equivalent to the polynomial tail behavior of the spectral density.

• σ2 the process marginal variance

•When ν = .5, Matérn is an exponential covariance, ν =∞, a Gaussian.



Nonstationary covariance functions
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• Convolution model (Higdon, Fuentes)

Represent the process first, then figure out the covariance function

g(s) =
∫
<2
H(s,u)dW (u)

dW (u) a two dimensional standard, white noise process.

The covariance function:

k(s1, s2) =
∫
<2
H(s1,u)H(s2,u)du

• H can be the Green’s function for a stochastic PDE ( – a connection

to INLA)
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2-D exponential kernel example:

H(s,u) =
σ(s)

θ(s)
e−||s−u||/θ(s)

kθ(s1, s2) = σ(s1)σ(s2)
∫ 1

θ(s1)θ(s2)
e−||s1−u||/θ(s1)e−||s2−u||/θ(s2)du

• If θ(s) ≡ θ in 2-d this gives a Matérn with smoothness ν = 1.0

• For unequal θ no simple closed form for this covariance.



Scale mixture (Paciorek, Stein)
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ν = 1.0

k(s1, s2) ∼ dK1(d),

where

d =
||s1 − s2||√

θ(s1)2 + θ(s2)2

These are different models.

Conjecture: as θ(s2)→ 0 give different smoothness at s2

Open question how to figure out which model is more appropriate



Joint distribution
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Observations

y(si) = f(si) + ei

Ki,j = k(si, sj) and f is MN(0,K)

log Likelihood

`(y, [σ2, θ, τ ]) = −(1/2)yT (K + τ2I)−1y − (1/2)log|K + τ2|+ C

• Maximize to find parameters

• For large data sets K is also large.
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Simulating a Gaussian Process
at locations s1, . . . , sM

• Form Ki,j = k(si, sj) covariance matrix at locations

• f = Ωe where e are iid N(0,1)

Ω is the matrix square root of K

Conditional simulation of a Gaussian Process
at locations sg1, . . . , s

g
M

conditional on observations y1, . . . , yN at so1, . . . , s
o
N

• Form Ko,o Covariance matrix at observations locations

Kg,g Covariance matrix at grid locations

Kg,o Cross-covariance matrix between grid and observation locations

• f = f̂ + Ωe where e are iid N(0,1)

f̂ the conditional expectation for bbf (aka Kriging)

Ω is the matrix square root of Kg,g −Kg,o(Ko,o + τ2I)−1KT
g,o
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PART 3 Unconditional simulation



Climate model patterns
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Local Matérn MLEs for the 30 member ensemble patterns
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• 11× 11 windows using coordinates in degrees

• About 13K grid boxes in this subregion



What should we do with these?
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• Assume that the parameter estimates at the center of the window are

good estimates for the parameter “fields” σ(s), θ(s), and τ(s).

• RECALL Form Ki,j = k(si, sj) covariance matrix at all observation

locations

• f = Ωe where e are iid N(0,1)

Ω is the matrix square root of K

PROBLEM:
K is too big for computation.
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SOLUTION:
Reexpress model in more computable form.

• Approximate the nonstationary model with a spatial autoregressive

model (SAR)

(Parameters of the local Matérn models encoded as parameter fields in

the LatticeKrig model.)

• Exploit sparse matrix methods to implement

f = Ωe where e are iid N(0,1)

ΩT is the sparse Cholesky decoposition of K



A Spatial Autoregression (SAR)

D. Nychka Global and local National Science Foundation 22

Gridded field:
. . . . .
. . c1 . .
. c2 c∗ c3 .
. . c4 . .
. . . . .

SAR weights:
. . . . .
. . -1 . .
. -1 a(s) −1 .
. . -1 . .
. . . . .

The filter:
a(s)c∗ − (c1 + c2 + c3 + c4) = white noise

• a(s) needs to be greater than 4.

1/
√
a(s)− 4 – an approximate range parameter

• Bc = i.i.d.N(0,1) where B is a sparse matrix

• Covariance for c is (BTB)−1 = Q−1 = K



Representing a random surface
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g(x) =
∑
j

φj(x)cj

• c is the random field from the SAR.

• {φj(x)} are compact, radial basis functions :

φj(x) = ψ(||s− uj||/δ)

A member of the Wendland basis functions
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Emulating pattern scaling fields
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PART 4

Conditional simulation



Ocean temperatures
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Predicted surface temperature field from ARGO float observations (

Kuusela and Stein (2017) )

• Covariance parameters are from Matérn family

• local windows of 20×20 degrees and 1 month

• student-T distribution used to account for heavy tailed observations.



What should we do with these?
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• Assume that the parameter estimates at the center of the window are

good estimates for the parameter “fields” σ(s), θ(s), and τ(s).

• RECALL

• f = f̂ + Ωe where e are iid N(0,1)

f̂ the conditional expectation for bbf (aka Kriging)

Ω is the matrix square root of

Kg,g −Kg,o(Ko,o)−1KT
g,o

PROBLEM: all the Ks are too big for computation.
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SOLUTION: Simulate conditional field by moving local neighbor-

hoods

• Generate a realization of e on the grid.

LOOP OVER GRID LOCATIONS

• For each grid location evaluate Ω in a local neighbor centered at this

point, Ωlocal

• Find the symmetric square root of Ωlocal

• Apply the center row of square root matrix to the right subset of e.

( throw the other rows away!)

END LOOP

This is an embarrassingly parallel computation.



ARGO analysis
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Conditional Mean

Draw from Conditional Distribution



Why this works
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• The ”screening effect” for spatial prediction suggests that the Ω ma-

trix will largely depend on a local neighborhood of the observations.

• Can compute explicitly how well the center row of Ω
1/2
local approximates

a much larger domain/neighborhood.
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Values of τ2 .005, .01, .1, .5, 1.0
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PART 5:

Parallel computation with R



The Cheyenne supercomputer.
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≈145K cores = 4032 nodes × 36 cores

and each core with 2Gb memory

52Pb parallel file system

• Core-hours are available to the NSF research community.

• Simple application process for graduate student allocations.

• Implementation of R on batch and interactive nodes.



Are zillions of R workers feasible?
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Yes for embarassingly parallel data analysis.

• Rmpi used to initiate many parallel R sessions

from within a supervisor R session.

• Time to initiate 1000 workers takes about 1 minute.

• Little time lost in broadcasting the data object (12Mb) – about 3

seconds.



Approximate linear scaling using Rmpi
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Individual times for:

spawn broadcast apply
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Summary
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• Emulation of climate model experiments for interpolation and uncer-

tainty quantification is a fruitful area for data science.

• Local covariance fitting can capture variation in complex model output

and in geophysical fields.

• Markov random field based models are suited for large data sets.

• There is an emerging role for supercomputers to support data analysis.

Software
• fields R package, Nychka et al. (2000 - present)

• LatticeKrig R package, Nychka et al. (2014- present)

• HPC4Stats SAMSI short course August 2017, Nychka, Hammerling and

Lenssen.
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Thank you!
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